【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式進(jìn)行,兩項(xiàng)成績(jī)的原始分均為100分.前6名選手的得分如下:

    序號(hào)

項(xiàng)目

1

2

3

4

5

6

筆試成績(jī)/

85

92

84

90

84

80

面試成績(jī)/

90

88

86

90

80

85

根據(jù)規(guī)定,筆試成績(jī)和面試成績(jī)分別按一定的百分比折合成綜合成績(jī)(綜合成績(jī)的滿分仍為100)

16名選手筆試成績(jī)的中位數(shù)是________分,眾數(shù)是________分;

2現(xiàn)得知1號(hào)選手的綜合成績(jī)?yōu)?/span>88分,求筆試成績(jī)和面試成績(jī)各占的百分比;

3求出其余五名選手的綜合成績(jī),并以綜合成績(jī)排序確定前兩名人選.

【答案】184.5,84

2筆試成績(jī)和面試成績(jī)所占的百分比分別是40%,60%

3綜合成績(jī)排序前兩名的人選是4號(hào)和2號(hào)選手.

【解析】試題分析:(1)根據(jù)中位數(shù)和眾數(shù)的定義即把這組數(shù)據(jù)從小到大排列,再找出最中間兩個(gè)數(shù)的平均數(shù)就是中位數(shù),再找出出現(xiàn)的次數(shù)最多的數(shù)即是眾數(shù);

2)先設(shè)筆試成績(jī)和面試成績(jī)各占的百分百是x,y,根據(jù)題意列出方程組,求出x,y的值即可;

3)根據(jù)筆試成績(jī)和面試成績(jī)各占的百分比,分別求出其余五名選手的綜合成績(jī),即可得出答案.

試題解析:(1)把這組數(shù)據(jù)從小到大排列為,80,84,84,85,90,92,

最中間兩個(gè)數(shù)的平均數(shù)是(84+85÷2=84.5(分),

則這6名選手筆試成績(jī)的中位數(shù)是84.5,

84出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,

則這6名選手筆試成績(jī)的眾數(shù)是84;

2)設(shè)筆試成績(jī)和面試成績(jī)各占的百分比是xy,根據(jù)題意得:

解得: ,

筆試成績(jī)和面試成績(jī)各占的百分比是40%,60%;

32號(hào)選手的綜合成績(jī)是92×0.4+88×0.6=89.6(分),

3號(hào)選手的綜合成績(jī)是84×0.4+86×0.6=85.2(分),

4號(hào)選手的綜合成績(jī)是90×0.4+90×0.6=90(分),

5號(hào)選手的綜合成績(jī)是84×0.4+80×0.6=81.6(分),

6號(hào)選手的綜合成績(jī)是80×0.4+85×0.6=83(分),

則綜合成績(jī)排序前兩名人選是4號(hào)和2號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(1 ;(2

3;(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四塊長(zhǎng)為a,寬為b的長(zhǎng)方形木板圍成如圖所示的正方形,請(qǐng)解答下列問(wèn)題:

(1)按要求用含a,b的式子表示空心部分的正方形的面積S(結(jié)果不要化簡(jiǎn),保留原式):

①用大正方形面積減去四塊木板的面積表示:S= ;

②直接用空心部分的正方形邊長(zhǎng)的平方表示:S=

(2)由①、②可得等式 ;

(3)用整式的乘法驗(yàn)證(2)中的等式成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=30°,OP平分AOBPDOBD,PCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,我省啟動(dòng)了“關(guān)愛(ài)留守兒童工程”.某村小為了了解各年級(jí)留守兒童的數(shù)量,對(duì)一到六年級(jí)留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級(jí)的留守兒童人數(shù)分別為10,15,10,17,18,20.對(duì)于這組數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是(

A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補(bǔ)充條件后仍不一定能保證ABC≌△ABC,則補(bǔ)充的這個(gè)條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件中:①∠A+B=C,②∠A:B:C=1: 2:3,③∠A=90°﹣B,④∠A=B=C中,能確定ABC是直角三角形的條件有(  。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金瑞公司決定從廠家購(gòu)進(jìn)甲、乙兩種不同型號(hào)的顯示器共50臺(tái),購(gòu)進(jìn)顯示器的總金額不超過(guò)77000元,已知甲、乙型號(hào)的顯示器價(jià)格分別為1000元/臺(tái)、2000元/臺(tái)

1求金瑞公司至少購(gòu)進(jìn)甲型顯示器多少臺(tái)?

2若甲型顯示器的臺(tái)數(shù)不超過(guò)乙型顯示器的臺(tái)數(shù),則有哪些購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)把下列證明過(guò)程補(bǔ)充完整(括號(hào)內(nèi)填寫(xiě)相應(yīng)的理由)

已知:如圖,點(diǎn)EBC延長(zhǎng)線上,AECD于點(diǎn)F,ADBC,1=2,3=

4,求證:ABCD.

證明:ADBC(已知)

∴∠3=______( )

又∵∠3=4(已知)

∴∠4=______( )

∵∠1=2(已知)

∴∠1+CAF=2+CAF(等式性質(zhì))

即∠BAF=_______

∴∠4=________( )

ABCD( )

查看答案和解析>>

同步練習(xí)冊(cè)答案