(本小題滿分8分)
如圖,已知在⊙O中,AB=4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

(1)求圖中陰影部分的面積;

 

 
(2)若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請求出這個(gè)圓錐的底面圓的半徑.

(3) 試判斷⊙O中其余部分能否給(2)中的圓錐做兩個(gè)底面。
解:(1)法一:過O作OE⊥AB于E,則AE=AB=2.····················· 1分
  
在RtAEO中,∠BAC=30°,cos30°=
∴OA===4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S陰影==.································································· 4分
法二:連結(jié)AD.∵AC⊥BD,AC是直徑,

 

 
∴AC垂直平分BD.     ……………………1分

∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°,
∴∠BOD=120°.        ……………………2分
∵BF=AB=2,sin60°=,AF=AB·sin60°=4×=6.
∴OB2=BF2+OF2.即.∴OB=4.   ···························· 3分
∴S陰影=S=.      ········································································ 4分
法三:連結(jié)BC.∵AC為⊙O的直徑,∴∠ABC=90°.……………………1分

∵AB=4,∴.        ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S陰影=π·OA2=×42·π=.……………………4分
以下同法一.
(2)設(shè)圓錐的底面圓的半徑為r,則周長為2πr,
.  ∴.       ···················································· 6分
(3)<8-12,故能得到兩個(gè)這樣的底面!8分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E,要使DE是⊙O的切線,還需補(bǔ)充一個(gè)條件,則補(bǔ)充的條件不正確的是( 。
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·貴港)(本題滿分11分)
如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過點(diǎn)C作大圓的切線CD交AB的延長線于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長為y:
①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一直角三角形的斜邊長為,內(nèi)切圓半徑是,則內(nèi)切圓的面積與三角形面積之比是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,
連接BD,過點(diǎn)E作EM∥BD,交BA的延長線于點(diǎn)M.

(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠APD=45º時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖2,點(diǎn)、、在⊙O上,若,則的度數(shù)為 (    ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011年青海,4,2分)如圖1所示,⊙O的兩條切線PA和PB相交于點(diǎn)P,與⊙O相切于A、B兩點(diǎn),C是⊙O上的一點(diǎn),若∠P=700,則∠ACB=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·永州)如圖,在⊙O中,直徑CD垂直弦AB于點(diǎn)E,連接OB,CB,已知⊙O的半徑為2,AB=,則∠BCD=________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·柳州)(本題滿分10分)
如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CDAD,垂足為D,直線CDAB的延長線交于點(diǎn)E
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長.

查看答案和解析>>

同步練習(xí)冊答案