【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則下列4個(gè)結(jié)論::①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④點(diǎn)M(x1 , y1)、N(x2 , y2)在拋物線上,若x1<x2 , 則y1≤y2 , 其中正確結(jié)論的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:函數(shù)與x軸有兩個(gè)交點(diǎn),則b2﹣4ac>0,故①錯(cuò)誤; 函數(shù)的對(duì)稱軸是x=﹣1,即﹣ =﹣1,則b=2a,2a﹣b=0,故②正確;
當(dāng)x=1時(shí),函數(shù)對(duì)應(yīng)的點(diǎn)在x軸下方,則a+b+c<0,則③正確;
x1<x2 , 若同在對(duì)稱軸的右側(cè),則y1>y2 , 則④錯(cuò)誤.
所以正確的選項(xiàng)有②③兩項(xiàng),
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水龍頭關(guān)閉不緊會(huì)造成滴水,小明用可以顯示水量的容器做圖①所示的試驗(yàn),并根據(jù)試驗(yàn)數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時(shí)間t(h)的函數(shù)關(guān)系圖象,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)容器內(nèi)原有水多少?

(2)求Wt之間的函數(shù)關(guān)系式,并計(jì)算在這種滴水狀態(tài)下一天的滴水量是多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (k>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)舉辦的“中國(guó)詩(shī)詞大會(huì)”節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了解該校九年級(jí)學(xué)生對(duì)觀看“中國(guó)詩(shī)詞大會(huì)”節(jié)目的喜愛程度,對(duì)該校九年級(jí)部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為:A 級(jí)(非常喜歡),B 級(jí)(較喜歡),C 級(jí)(一般),D 級(jí)(不喜歡).請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本容量是 , 表示“D級(jí)(不喜歡)”的扇形的圓心角為°;
(2)若該校九年級(jí)有200名學(xué)生.請(qǐng)你估計(jì)該年級(jí)觀看“中國(guó)詩(shī)詞大會(huì)”節(jié)目B 級(jí)(較喜歡)的學(xué)生人數(shù);
(3)若從本次調(diào)查中的A級(jí)(非常喜歡)的5名學(xué)生中,選出2名去參加廣州市中學(xué)生詩(shī)詞大會(huì)比賽,已知A級(jí)學(xué)生中男生有3名,請(qǐng)用“列表”或“畫樹狀圖”的方法求出所選出的2名學(xué)生中至少有1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:AD與⊙O相切于點(diǎn)D,AF經(jīng)過(guò)圓心與圓交于點(diǎn)E、F,連接DE、DF,且EF=6,AD=4.
(1)證明:AD2=AEAF;
(2)延長(zhǎng)AD到點(diǎn)B,使DB=AD,直徑EF上有一動(dòng)點(diǎn)C,連接CB交DF于點(diǎn)G,連接EG,設(shè)∠ACB=α,BG=x,EG=y. ①當(dāng)α=900時(shí),探索EG與BD的大小關(guān)系?并說(shuō)明理由;
②當(dāng)α=1200時(shí),求y與x的關(guān)系式,并用x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個(gè)多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個(gè)正多邊形中∠α的變化情況,解答下列問(wèn)題.

(1)將下面的表格補(bǔ)充完整:

正多邊形的邊數(shù)

3

4

5

6

……

18

α的度數(shù)

   

   

   

   

……

   

(2)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的∠α=20°?若存在,直接寫出n的值;若不存在,請(qǐng)說(shuō)明理由.

(3)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的∠α=21°?若存在,直接寫出n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在Rt△ABC中,斜邊AB=10,sinA= ,點(diǎn)P為邊AB上一動(dòng)點(diǎn)(不與A,B重合),PQ平分∠CPB交邊BC于點(diǎn)Q,QM⊥AB于M,QN⊥CP于N.

(1)當(dāng)AP=CP時(shí),求QP;
(2)若四邊形PMQN為菱形,求CQ;
(3)探究:AP為何值時(shí),四邊形PMQN與△BPQ的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點(diǎn),已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數(shù);
(2)求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案