【題目】如圖,在直角坐標系中,點A,B分別在射線Ox,Oy上移動,BE是∠ABy的角平分線,BE的反向延長線與∠OAB的平分線相交于點C,試問∠ACB的大小是否為定值?請給出證明。

【答案】∠ACB的大小不發(fā)生變化,且始終保持45

【解析】

根據(jù)角平分線的定義、三角形的內(nèi)角和、外角性質(zhì)求解.

在縱軸B點上方任取一點為F,由BE平分∠ABF、CA平分∠OAB2EBA=ABF、OAB=2CAB,根據(jù)AOB外角性質(zhì)得∠ABF=AOB+OAB,即∠ABF=90°+OAB,再根據(jù)ACB外角性質(zhì)得∠EBA=C+CAB,即90°+OAB=2(C+CAB),從而知90°+OAB=2C+OAB,即可得∠C=45°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△中,=,點 邊上,連接,則添加下列哪一個條件后,仍無法判定△與△全等( 。

A. B. C. =∠ D. =∠

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點A的坐標為(3,3);
②當x>3時,y2>y1;
③當x=1時,BC=8;
④當x逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減。
其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,△ABD△ACD的周長之差為_________,△ABD△ACD的面積關(guān)系為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算不正確的是(
A.
B.
C.|3|=3
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校參加區(qū)教育局舉辦的學生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.

(1)在圖1中,“7分”所在扇形的圓心角等于°.
(2)請你將圖2的統(tǒng)計圖補充完整;
(3)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學校成績較好.
(4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學校?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC=2 ,E為BC邊上一點,BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點恰好落在對角線AC上的B′處,則AB=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增.計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%15%5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:㎡),繪制了統(tǒng)計圖,如圖所示,下面有四個推斷:

年用水量不超過180㎡的該市居民家庭按第一檔水價交費

年用水量超過240㎡的該市居民家庭按第三檔水價交費

該市居民家庭年用水量的中位數(shù)在150-180之間

該市居民家庭年用水量的平均數(shù)不超過180

正確的是

A.①③ B.①④ C.②③ D.②④

查看答案和解析>>

同步練習冊答案