【題目】拋物線的圖象如圖所示,拋物線過點(diǎn),則下列結(jié)論:

;②;③;④為一切實(shí)數(shù));⑤;正確的個(gè)數(shù)有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】A

【解析】

由拋物線開口方向,對(duì)稱軸的位置以及與軸的交點(diǎn)位置,確定的正負(fù),即可①;拋物線y=ax2+bx+c的對(duì)稱軸為x=,即可判斷②;拋物線與x軸的一個(gè)交點(diǎn) (,0),得到另一個(gè)交點(diǎn),把b=2a代入即可判斷③,根據(jù)拋物線的最大值判斷④由拋物線與x軸有兩個(gè)交點(diǎn)得到b2-4ac>0,即可判斷⑤.

①∵拋物線開口向下,

a<0,

∵對(duì)稱軸是:

a、b異號(hào),

b>0,

∵拋物線與y軸交于正半軸,

c>0,

abc<0,

∴選項(xiàng)①不正確;

②拋物線對(duì)稱軸是:

b=2a

2a+b=0,

選項(xiàng)②不正確;

③拋物線與x軸的一個(gè)交點(diǎn) (,0),則另一個(gè)交點(diǎn)為(,0),

b=2a代入得:

∴選項(xiàng)③不正確;

④拋物線在時(shí)取得最大值,

故選項(xiàng)④不正確;

∵拋物線與x軸有兩個(gè)交點(diǎn),

b2-4ac>0

∴選項(xiàng)⑤正確;

正確的有1個(gè),

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線C:y=x2+3x-10平移到C′.若兩條拋物線C,C′關(guān)于直線x=1對(duì)稱,則下列平移方法中正確的是( )

A. 將拋物線C向右平移個(gè)單位 B. 將拋物線C向右平移3個(gè)單位

C. 將拋物線C向右平移5個(gè)單位 D. 將拋物線C向右平移6個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC=BAC=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共4,某學(xué)習(xí)小組做摸球試驗(yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).如表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1 000

摸到白球的次數(shù)m

28

34

48

130

197

251

摸到白球的頻率

0.28

0.23

0.24

0.26

0.246

0.251

(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近    (精確到0.01);

(2)試估算口袋中白種顏色的球有多少只?

(3)請(qǐng)根據(jù)估算的結(jié)果思考從口袋中先摸出一球,不放回,再摸出一球,這兩只球顏色不同的概率是多少?畫出樹狀圖(或列表)表示所有可能的結(jié)果,并計(jì)算概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在目前萬物互聯(lián)的時(shí)代,人工智能正掀起一場影響深刻的技術(shù)革命.谷歌、蘋果、BAT、華為……巨頭們紛紛布局人工智能。有人猜測,互聯(lián)網(wǎng)過后,我們可能會(huì)迎來機(jī)器人。教育從幼兒抓起,近年來我國國內(nèi)幼兒教育機(jī)器人發(fā)展趨勢迅猛,市場上出現(xiàn)了滿足各類要求的幼教機(jī)器人產(chǎn)品.“雙十一”當(dāng)天,某品牌幼教機(jī)器人專賣店抓住機(jī)遇,對(duì)最暢銷的款幼教機(jī)器人進(jìn)行促銷,一臺(tái)款幼教機(jī)器人的成本價(jià)為850元,標(biāo)價(jià)為1300元.

(1)一臺(tái)款幼教機(jī)器人的價(jià)格最多降價(jià)多少元,才能使利潤率不低于30%;

(2)該專賣店以前每周共售出款幼教機(jī)器人100個(gè),“雙十一”狂購夜中每臺(tái)款幼教機(jī)器人在標(biāo)價(jià)的基礎(chǔ)上降價(jià)元,結(jié)果這天晚上賣出的款幼教機(jī)器人的數(shù)量比原來一周賣出的款幼教機(jī)器人的數(shù)量增加了,同時(shí)這天晚上的利潤比原來一周的利潤增加了,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①M(fèi)F=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論_____.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

小凱遇到這樣一個(gè)問題:如圖①,在四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,AC=4,BD=6,AOB=30°,求四邊形ABCD的面積小凱發(fā)現(xiàn),分別過點(diǎn)A,C作直線BD的垂線,垂足分別為E,F(xiàn),設(shè)AOm,通過計(jì)算△ABD與△BCD的面積和可以使問題得到解決(如圖②).請(qǐng)回答:

(1)ABD的面積為________(用含m的式子表示);

(2)求四邊形ABCD的面積

參考小凱思考問題的方法解決問題:

如圖③,在四邊形ABCD對(duì)角線AC,BD相交于點(diǎn)O,AC=a,BD=b,AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)θ為直角三角形的一個(gè)銳角,給出θ角三角函數(shù)的兩條基本性質(zhì):①tanθ=;②cos2θ+sin2θ=1,利用這些性質(zhì)解答本題.已知cosθ+sinθ=,求值:

(1)tanθ+; (2)|cosθ-sinθ|.

查看答案和解析>>

同步練習(xí)冊(cè)答案