【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結論正確的有_____.
①abc>0
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3
③2a+b=0
④當x>0時,y隨x的增大而減小
【答案】②③
【解析】由函數(shù)圖象可得拋物線開口向下,得到a<0,又對稱軸在y軸右側,可得b>0,根據(jù)拋物線與y軸的交點在y軸正半軸,得到c>0,進而得到abc<0,結論①錯誤;由拋物線與x軸的交點為(3,0)及對稱軸為x=1,利用對稱性得到拋物線與x軸另一個交點為(﹣1,0),進而得到方程ax2+bx+c=0的兩根分別為﹣1和3,結論②正確;由拋物線的對稱軸為x=1,利用對稱軸公式得到2a+b=0,結論③正確;由拋物線的對稱軸為直線x=1,得到對稱軸右邊y隨x的增大而減小,對稱軸左邊y隨x的增大而增大,故x大于0小于1時,y隨x的增大而增大,結論④錯誤.
∵拋物線開口向下,∴a<0,
∵對稱軸在y軸右側,∴>0,∴b>0,
∵拋物線與y軸的交點在y軸正半軸,∴c>0,
∴abc<0,故①錯誤;
∵拋物線與x軸的一個交點為(3,0),又對稱軸為直線x=1,
∴拋物線與x軸的另一個交點為(﹣1,0),
∴方程ax2+bx+c=0的兩根是x1=﹣1,x2=3,故②正確;
∵對稱軸為直線x=1,∴=1,即2a+b=0,故③正確;
∵由函數(shù)圖象可得:當0<x<1時,y隨x的增大而增大;
當x>1時,y隨x的增大而減小,故④錯誤;
故答案為②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,連接EF交AD于G.下列結論:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④當∠BAC為60°時,AG=3DG,其中不正確的結論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,從邊長為a的正方形紙片中剪去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積=(上底+下底)×高)
公式的探究與應用:
(1)如圖1所示,可以求出陰影部分的面積是 ;
(2)若將圖1的陰影部分裁剪下來,重新拼成一個如圖2所示的長方形,求此長方形的面積.
(3)比較兩圖陰影部分的面積,可以得到一個公式:
;
(4)運用公式計算
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解了解節(jié)能減排、垃圾分類等知識的普及情況,從該校2000名學生中隨機抽取了部分學生進行調(diào)查調(diào)查,調(diào)查結果分為“非常了解“、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結果繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查的學生共有 人,估計該校2000名學生中“不了解”的人數(shù)約有 人.
(2)“非常了解”的4人中有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人去參加環(huán)保知識競賽,請用畫樹狀圖和列表的方法,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車行去年A型車的銷售總額為6萬元,今年每輛車的售價比去年減少400元.若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)求今年A型車每輛車的售價.
(2)該車行計劃新進一批A型車和B型車共45輛,已知A、B型車的進貨價格分別是1100元,1400元,今年B型車的銷售價格是2000元,要求B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點 P 從 A 點出發(fā)沿 A-C-B 路徑向終點運動,終點為 B點;點 Q 從 B 點出發(fā)沿 B-C-A 路徑向終點運動,終點為 A 點,點 P 和 Q 分別以 1cm/s 和 xcm / s 的運動速度 同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過 P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如圖,當 x 2 時,設點 P 運動時間為 ts ,當點 P 在 AC 上,點 Q 在 BC 上時:
①用含 t 的式子表示 CP 和 CQ,則 CP= cm,CQ= cm;
②當 t 2 時,PEC 與QFC 全等嗎?并說明理由;
(2)請問:當 x 3 時,PEC 與QFC 有沒有可能全等?若能,直接寫出符合條件的 t 的值;若不能,請說明 理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com