為參加學(xué)?萍脊(jié)比賽,小明利用如圖的兩塊邊角料木板做模型,其中一塊是邊長為60cm的正方形;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形(如圖①),小明想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②),由于受木板紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn),且頂點(diǎn)B所對(duì)的頂點(diǎn)在EF上.
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積最大?最大面積是多少?

【答案】分析:(1)根據(jù)四邊形ABCD是正方形可得AD∥BG所以△DEF∽△CGF,再根據(jù),得出,即可求出FC的長;
(2)先過點(diǎn)P分別作PN⊥BG于點(diǎn)N,PM⊥AB于點(diǎn)M,根據(jù)FC∥PN,得出△GFC∽△GPN,=,再根據(jù)BG=120,BC=60,求出CG,因?yàn)镻N=x,則=,GN=,從而求出,
最后得出設(shè)矩形的面積即可求出矩形的最大面積.
解答:解:(1)∵四邊形ABCD是正方形,
∴AD∥BG,
∴△DEF∽△CGF,

,
∴FC=40(cm)

(2)如圖,設(shè)矩形頂點(diǎn)B的對(duì)應(yīng)點(diǎn)為P,
當(dāng)頂點(diǎn)P在EF上時(shí),過點(diǎn)P分別作PN⊥BG于點(diǎn)N,PM⊥AB于點(diǎn)M.
∵FC∥PN,
∴△GFC∽△GPN,
=,
∵BG=120,BC=60,
∴CG=BG-BC=120-60=60,
∵PN=x,則=,
∴GN=,

∴設(shè)矩形的面積
∴當(dāng)x=40時(shí),y的最大值為2400(cm2
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、二次函數(shù);本題的關(guān)鍵是根據(jù)相似三角形的判定與性質(zhì)表示出矩形的面積,得出二次函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濱湖區(qū)模擬)“知識(shí)改變命運(yùn),科技繁榮祖國.”為提升中小學(xué)生的科技素養(yǎng),我區(qū)每年都要舉辦中小學(xué)科技節(jié).為迎接比賽,某校進(jìn)行了宣傳動(dòng)員并公布了相關(guān)項(xiàng)目如下:A--桿身橡筋動(dòng)力模型;B--直升橡筋動(dòng)力模型;C--空轎橡筋動(dòng)力模型.右圖為該校報(bào)名參加科技比賽的學(xué)生人數(shù)統(tǒng)計(jì)圖.

(1)該校報(bào)名參加B項(xiàng)目學(xué)生人數(shù)是
10
10
人;
(2)該校報(bào)名參加C項(xiàng)目學(xué)生人數(shù)所在扇形的圓心角的度數(shù)是
119.988
119.988
°;
(3)為確定參加區(qū)科技節(jié)的學(xué)生人選,該校在集訓(xùn)后進(jìn)行了校內(nèi)選拔賽,最后一輪復(fù)賽,決定在甲、乙2名候選人中選出1人代表學(xué)校參加區(qū)科技節(jié)B項(xiàng)目的比賽,每人進(jìn)行了4次試飛,對(duì)照一定的標(biāo)準(zhǔn),判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教練,你打算安排誰代表學(xué)校參賽?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為參加學(xué)?萍脊(jié)比賽,小明利用如圖的兩塊邊角料木板做模型,其中一塊是邊長為60cm的正方形;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形(如圖①),小明想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②),由于受木板紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn),且頂點(diǎn)B所對(duì)的頂點(diǎn)在EF上.
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為參加學(xué)?萍脊(jié)比賽,小明利用如圖的兩塊邊角料木板做模型,其中一塊是邊長為60cm的正方形;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形(如圖①),小明想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②),由于受木板紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn),且頂點(diǎn)B所對(duì)的頂點(diǎn)在EF上.
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市十三中中考數(shù)學(xué)模擬試卷(4月份)(解析版) 題型:解答題

為參加學(xué)?萍脊(jié)比賽,小明利用如圖的兩塊邊角料木板做模型,其中一塊是邊長為60cm的正方形;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形(如圖①),小明想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②),由于受木板紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn),且頂點(diǎn)B所對(duì)的頂點(diǎn)在EF上.
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案