【題目】如圖,直線與頂點(diǎn)為的拋物線的交點(diǎn)在軸上,交點(diǎn)在軸上.
(1)求拋物線的解析式.
(2)是否為直角三角形,請說明理由.
(3)在第二象限的拋物線上,是否存在異于頂點(diǎn)的點(diǎn),使與的面積相等?若存在,求出符合條件的點(diǎn)坐標(biāo).若不存在,請說明理由.
(4)在第三象限的拋物線上求出點(diǎn),使.
【答案】(1);(2)不是直角三角形,理由見解析;(3)存在,;(4)點(diǎn).
【解析】
(1)待定系數(shù)法即可求出;
(2)取中點(diǎn),根據(jù)點(diǎn)的坐標(biāo)關(guān)系判斷即可證明;
(3)設(shè)的解析式為,代入D點(diǎn)坐標(biāo)可求出,通過解方程,若有解,即可證明存在;
(4)設(shè)直線的解析式為并求出,進(jìn)而可求出直線的解析式,聯(lián)立BF與拋物線解析式即可求得.
解:(1)如圖,
由知,,.
則拋物線.
將代入,得.
∴.
∴拋物線解析式為.
(2)不是直角三角形.理由如下
由(1),,
∴頂點(diǎn).
如圖,由(1),可得.
取中點(diǎn).
則.∴.
∵,∴不是直角三角形.
(3)如圖,存在點(diǎn),使.
設(shè)經(jīng)過點(diǎn)與平行的直線的解析式為.
將代入,得.∴.
∴的解析式為.
由,整理,得.
解得,.
當(dāng)時,.
∴.
(4)如圖,設(shè)直線的解析式為.
則解得,.
∴直線的解析式為.
∴經(jīng)過點(diǎn)與平行的直線的解析式為.
由,整理,得.
解得,或.
當(dāng)時,.
∴拋物線上點(diǎn),滿足.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個函數(shù),自變量x取a時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點(diǎn).如果二次函數(shù)y=x2+2x+c有兩個相異的不動點(diǎn)x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】保護(hù)環(huán)境衛(wèi)生,垃圾分類開始實(shí)施.我市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”四類,并且設(shè)置了相應(yīng)的垃圾箱.
(1)小亮將媽媽分類好的某類垃圾隨機(jī)投入到四種垃圾箱某類箱內(nèi),請寫出小亮投放正確的概率為 ;
(2)經(jīng)過媽媽的教育,小明已經(jīng)分清了“有害垃圾”,但仍然分不清“可回收物”、“濕垃圾”和“干垃圾”,這天小亮要將媽媽分類好的四類垃圾投入到四種垃圾箱內(nèi),請求出小明投放正確的概率;
(3)請你就小亮投放垃圾的事件提出兩條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為拋物線yx2上一動點(diǎn),以P為頂點(diǎn),且經(jīng)過原點(diǎn)O的拋物線,記作“yp”,設(shè)其與x軸另一交點(diǎn)為A,點(diǎn)P的橫坐標(biāo)為m.
(1)①當(dāng)△OPA為直角三角形時,m= ;
②當(dāng)△OPA為等邊三角形時,求此時“yp”的解析式;
(2)若P點(diǎn)的橫坐標(biāo)分別為1,2,3,…n(n為正整數(shù))時,拋物線“yp”分別記作“”、“”…,“”,設(shè)其與x軸另外一交點(diǎn)分別為A1,A2,A3,…An,過P1,P2,P3,…Pn作x軸的垂線,垂足分別為H1,H2,H3,…Hn.
1)① Pn的坐標(biāo)為 ;OAn= ;(用含n的代數(shù)式來表示)
②當(dāng)PnHn﹣OAn=16時,求n的值.
2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點(diǎn)A作∠DAF=∠DAB,過點(diǎn)D作AF的垂線,垂足為F,交AB的延長線于點(diǎn)P,連接CO并延長交⊙O于點(diǎn)G,連接EG,已知DE=4,AE=8.
(1)求證:DF是⊙O的切線;
(2)求證:OC2=OEOP;
(3)求線段EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016江蘇省鎮(zhèn)江市) (2016鎮(zhèn)江)如圖1,一次函數(shù)y=kx﹣3(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)(x>0)的圖象交于點(diǎn)B(4,b).
(1)b= ;k= ;
(2)點(diǎn)C是線段AB上的動點(diǎn)(于點(diǎn)A、B不重合),過點(diǎn)C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點(diǎn)D,求△OCD面積的最大值;
(3)將(2)中面積取得最大值的△OCD沿射線AB方向平移一定的距離,得到△O′C′D′,若點(diǎn)O的對應(yīng)點(diǎn)O′落在該反比例函數(shù)圖象上(如圖2),則點(diǎn)D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在中,,點(diǎn)是射線上任意一點(diǎn),是等邊三角形,且點(diǎn)在的內(nèi)部,連接.探究線段與之間的數(shù)量關(guān)系.
請你完成下列探究過程:
先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.
當(dāng)點(diǎn)與點(diǎn)重合時(如圖2),請你補(bǔ)全圖形.由的度數(shù)為_______________,點(diǎn)落在_______________,容易得出與之間的數(shù)量關(guān)系為_______________
當(dāng)是的平分線時,判斷與之間的數(shù)量關(guān)系并證明
當(dāng)點(diǎn)在如圖3的位置時,請你畫出圖形,研究三點(diǎn)是否在以為圓心的同一個圓上,寫出你的猜想并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將南北向的中山路與東西向的北京路看成兩條直線,十字路口記作點(diǎn).甲從中山路上點(diǎn)出發(fā),騎車向北勻速直行;與此同時,乙從點(diǎn)出發(fā),沿北京路步行向東勻速直行.設(shè)出發(fā)時,甲、乙兩人與點(diǎn)的距離分別為、.已知、與之間的函數(shù)關(guān)系如圖②所示.
(1)求甲、乙兩人的速度;
(2)當(dāng)取何值時,甲、乙兩人之間的距離最短?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com