如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點(diǎn),連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,∠D=∠B,ADBC,
∴∠BAD+∠B=180°,
∵∠BAD=2∠B,
∴∠B=60°,
∴∠D=∠B=60°,
∴△ABC與△ACD是全等的等邊三角形.
∵E,F(xiàn)分別為BC,CD的中點(diǎn),
∴BE=CE=CF=DF=
1
2
AB.
在△ABE與△ACE中,
AB=AC
∠B=∠ACB=60°
BE=CE

∴△ABE≌△ACE(SAS),
同理,△ACF≌△ADF≌△ABE,
∴圖中與△ABE全等的三角形(△ABE除外)有3個(gè).
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O.點(diǎn)E為邊AB的中點(diǎn),且BD=6,
AC=8,則OE長為( 。
A.2B.2.5C.2.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

過平行四邊形對角線的交點(diǎn),引互相垂直的兩條直線分別和四邊形的四條邊相交,判斷順次連接四個(gè)交點(diǎn)所組成的四邊形是什么四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△OPQ中,∠POQ=90°,∠Q=30°,OP=4
3
.四邊形ABCD是菱形,點(diǎn)A在邊PQ上,B、C在邊QO上(B點(diǎn)在C點(diǎn)的左側(cè)),且∠ABC=60°.設(shè)BQ=x.
(1)試用含x的代數(shù)式表示菱形ABCD的邊長;
(2)當(dāng)點(diǎn)D在線段OP上時(shí),求x的值;
(3)設(shè)菱形ABCD與△OPQ重合部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式;
(4)連接PD、OD.對于不同的x值,請你比較線段OD與PD的大小關(guān)系,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,菱形ABCD中,對角線AC、BD交于點(diǎn)O,則下列結(jié)論錯(cuò)誤的是(  )
A.AC⊥BDB.∠DAC=∠BACC.AB=ACD.BO=DO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=______cm.菱形面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,過平行四邊形ABCD的對角線交點(diǎn)O作互相垂直的兩條直線EG、FH與平行四邊形ABCD各邊分別相交于點(diǎn)E、F、G、H.求證:四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知菱形ABCD,AE⊥BC于E,AF⊥CD于F.
(1)求證:CE=CF;
(2)若菱形邊長為8,E是BC的中點(diǎn),求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在梯形ABCD中,DCAB,AD=BC,BD平分∠ABC,∠A=60°.
(1)求∠ABD的度數(shù);
(2)若AD=2,求對角線BD的長.

查看答案和解析>>

同步練習(xí)冊答案