【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達(dá)海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
【答案】(1)11:00;(2)能,理由見解析.
【解析】試題分析:(1)延長AB交海岸線l于點(diǎn)D,過點(diǎn)B作BE⊥海岸線l于點(diǎn)E,過點(diǎn)A作AF⊥l于F,易證△ABC是直角三角形,再證明∠BAC=30°,再求出BD的長即可解決問題.(2)在RT△BEC中,求出CD的長度,和CN、CM比較即可解決問題.
試題解析:(1)延長AB交海岸線l于點(diǎn)D,過點(diǎn)B作BE⊥海岸線l于點(diǎn)E,過點(diǎn)A作AF⊥l于F,如圖所示.
∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,
∴∠ECB=30°,∠ACF=60°,
∴∠BCA=90°,
∵BC=12,AB=36×=24,
∴AB=2BC,
∴∠BAC=30°,∠ABC=60°,
∵∠ABC=∠BDC+∠BCD=60°,
∴∠BDC=∠BCD=30°,
∴BD=BC=12,
∴時間t==小時=20分鐘,
∴輪船照此速度與航向航向,上午11::00到達(dá)海岸線.
(2)∵BD=BC,BE⊥CD,
∴DE=EC,
在RT△BEC中,∵BC=12,∠BCE=30°,
∴BE=6,EC=6≈10.2,
∴CD=20.4,
∵20<20.4<21.5,
∴輪船不改變航向,輪船可以停靠在碼頭.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,距表示數(shù)-2的點(diǎn)有7個單位長度的點(diǎn)表示的數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=3(x﹣2)2+5的圖象的頂點(diǎn)坐標(biāo)是( )
A. (2,5) B. (2,﹣5) C. (﹣2,5) D. (﹣2,﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個點(diǎn)中,在正比例函數(shù)y=﹣5x的圖象上的點(diǎn)是( )
A. (1,5)B. (0,5)C. (﹣1,5)D. (5,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,已知AB>BC.
(1)實(shí)踐與操作:作∠ADC的平分線交AB于點(diǎn)E,在DC上截取DF=AD,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形AEFD的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com