精英家教網(wǎng)如圖,從一個邊長為a的正方形紙片ABCD中剪去一個寬為b的長方形CDEF,再從剩下的紙片中沿平行短邊的方向剪去一個邊長為c的正方形BFHG,若長方形CDEF與AGHE的面積比是3:2,那么
ba
=
 
;正方形BFHG與正方形ABCD的面積比是
 
分析:先用a、b、c分別表示出長方形CDEF與AGHE的面積,再根據(jù)題意得a-b=c,將c消掉,從而得出
b
a
的值即可;然后再表示出正方形BFHG與正方形ABCD的面積,通過a=3b得出正方形BFHG與正方形ABCD的面積比.
解答:解:∵長方形CDEF與AGHE的面積分別為ab和c(a-c),
∴ab:c(a-c)=3:2,
又∵c=a-b,∴
ab
b(a-b)
=
3
2

整理得3b2=ab,
b
a
=
1
3
,
∴a=3b,
∵正方形BFHG與正方形ABCD的面積分別為(a-b)2和a2
(a-b)2
a2
=
(3b-b)2
(3b)2
=
4b2
9b2
=
4
9
,
故答案為
1
3
;
4
9
點評:本題考查了面積及等積變換,利用a、b、c分別表示出長方形CDEF與AGHE的面積,正方形BFHG與正方形ABCD的面積是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,從一個邊長為2米的菱形鐵皮中剪下一個圓形角為60°的扇形.
(1)求這個扇形的面積(結果保留π)
(2)在剩下的一塊余料中,能否從余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,從一個邊長為2的菱形鐵皮中剪下一個圓心角為60°的扇形.
(1)求這個扇形的面積(結果保留π).
(2)在剩下的一塊余料中,能否從余料中剪出一個圓作為底面與此扇形圍成一個圓錐請說明理由.
(3)當∠B為任意值時,(2)中的結論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,從一個邊長為1米的正方形鐵皮中剪下一個扇形.
(1)求這個扇形的面積(結果保留π);
(2)能否從剩下的余料中剪出一圓作為底面與此扇形圍成一個圓錐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江省杭州市九年級12月月考數(shù)學試卷(解析版) 題型:解答題

(本題10分)如圖,從一個邊長為1米的正方形鐵皮中剪下一個扇形.

(1)求這個扇形的面積(結果保留);

(2)能否從剩下的余料中剪出一個圓作為底面與此扇形圍成一個圓錐?請說明理由.

 

查看答案和解析>>

同步練習冊答案