【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動了3個單位長度,再向左移動 5 個單位長度,可以看到終點表示的數(shù)是 .已知點、是數(shù)軸上的點,完成下列各題:
(1)如果點表示數(shù)- 3,將點向右移動 7 個單位長度,那么終點表示的數(shù)是 ,、兩點間的距離是 .
(2)如果點表示數(shù)是3,將點向左移動 7 個單位長度,再向右移動5 個單位長度,那么終點表示的數(shù)是 ,、 兩點間的距離是 .
(3)一般地,如果點表示數(shù)為,將點向右移動個單位長度,再向左移動個單位長度,那么請你猜想終點表示的數(shù)是 ,、兩點間的距離是 .
【答案】(1)4,7;(2)1,2;(3)a+b-c,.
【解析】
(1)(2)根據(jù)圖形可直接的得出結(jié)論;
(3)先求出B點表示的數(shù),然后由數(shù)軸上兩點間的距離公式:兩點間的距離是兩點所表示的數(shù)差的絕對值,計算即可.
解:(1)由圖可知,點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是4,
A、B兩點間的距離是|-3-4|=7;
故答案為:4,7;
(2)如果點A表示數(shù)3,將點A向左移動7個單位長度,則點A表示3-7=-4,
再向右移動5個單位長度,那么終點B表示的數(shù)是-4+5=1,
A、B兩點間的距離是|3-1|=2;
故答案為:1,2;
(3)點A表示數(shù)為a,將點A向右移動b個單位長度,則點A表示a+b,再向左移動c個單位長度,那么終點B表示的數(shù)是a+b-c,
A、B兩點間的距離是|a+b-c-a|=|b-c|.
故答案為:a+b-c,|b-c|.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等, ,則下列結(jié)論成立的個數(shù)是
; ; ; 四邊形ACDF是平行四邊形; 六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 的邊長為 5,點 M 是邊 BC 上的點,DE⊥AM 于點 E,BF∥DE,交 AM 于點 F.若E 是 AF 的中點,則 DE 的長為( )
A.B.2C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的A,B,C三點所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點O的位置應(yīng)該在( )
A.點A的左邊
B.點A與點B之間
C.點B與點C之間(靠近點B)
D.點C的右邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與△ABC中AB、AC的延長線及BC邊相切,且∠ACB=90°,∠A,∠B,∠C所對的邊長依次為3,4,5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用如下方法測一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺上.向內(nèi)放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中能判定四邊形ABCD是平行四邊形的是( 。
A.∠A=∠B,∠C=∠DB.AB=AD,CB=CD
C.AB=CD,AD=BCD.AB∥CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACO=90°,∠AOC=30°,分別以AO、CO為邊向外作等邊三角形△AOD和等邊三角形△COE,DF⊥AO于F,連DE交AO于G.
(1)求證:△DFG≌△EOG;
(2)H為AD的中點,連HG,求證:CD=2HG;
(3)在(2)的條件下,AC=4,若M為AC的中點,求MG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點A,C的坐標分別為(2,0),(0,2),D是x軸正半軸上的一點(點D在點A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點在第一象限),連接FC交AB的延長線于點G.若反比例函數(shù)的圖象經(jīng)過點E,G兩點,則k的值為 ______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com