【題目】拋物線的頂點為D(-1,2),與x軸的一個交點A在點(-3,0)(-2,0)之間,其部分圖象如圖,則以下結(jié)論:①②當(dāng)x>-l時,yx增大而減小;③a+b+c<0;④若方程沒有實數(shù)根,則m>2. 其中正確的結(jié)論有________________.

【答案】②③④

【解析】分析利用圖象信息,以及二次函數(shù)的性質(zhì)即可一一判斷.

詳解∵二次函數(shù)與x軸有兩個交點b24ac0,故①錯誤;

觀察圖象可知當(dāng)x1yx增大而減小,故②正確;

∵拋物線與x軸的另一個交點為在(00)和(1,0)之間x=1,y=a+b+c0,故③正確

∵當(dāng)m2,拋物線與直線y=m沒有交點,∴方程ax2+bx+cm=0沒有實數(shù)根故④正確;

∵對稱軸x=﹣1=﹣,b=2aa+b+c0,3a+c0故⑤正確

故答案為:②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正比例函數(shù)y=2x的圖像與一次函數(shù) 的圖像交于點A(m,2),一次函數(shù)的圖象經(jīng)過點B(-2,-1)與y軸交點為C與x軸交點為D.

(1)求一次函數(shù)的解析式;

(2)求的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x時,yx的增大而減。虎a+b+c0中,其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點,DAC的中點,EBC的中點,FDE的中點.

(1)AC4,BC6,求CF的長.

(2)AB16CF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形中,,點是斜邊上的一點,將沿翻折得,連接,若是等腰三角形,則的長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點從點出發(fā)沿射線移動,同時,點從點出發(fā)沿線段的延長線移動,已知點、的移動速度相同,與直線相交于點.

1)如圖1,當(dāng)點在線段上時,過點的平行線交于點,連接、,求證:點的中點;

2)如圖2,過點作直線的垂線,垂足為,當(dāng)點、在移動過程中,線段、、有何數(shù)量關(guān)系?請直接寫出你的結(jié)論: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點為A、B,與y軸的交點為C,經(jīng)過點B的直線與拋物線的另一個交點為D.

(1)若點D的橫坐標(biāo)為x= -4,求這個一次函數(shù)與拋物線的解析式;

(2)若直線m平行于該拋物線的對稱軸,并且可以在線段AB間左右移動,它與直線BD和拋物線分別交于點E、F,求當(dāng)m移動到什么位置時,EF的值最大,最大值是多少?

(3)問原拋物線在第一象限是否存在點P,使得APB∽△ABC?若存在,請求出這時k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個圖案中有4個三角形,第個圖案中有6個三角形,第個圖案中有8個三角形,,按此規(guī)律排列下去,則第個圖案中三角形的個數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是 ;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案