如圖,方格紙中有一條美麗可愛(ài)的小金魚.
(1)在同一方格紙中,畫出將小金魚圖案繞原點(diǎn)O旋轉(zhuǎn)180°后得到的圖案;
(2)在同一方格紙中,并在軸的右側(cè),將原小金魚圖案原點(diǎn)O為位似中心放大,使它們的位似比為1:2,畫出放大后小金魚的圖案.

y

 

 

圖形見(jiàn)解析.

解析試題分析:(1)直接根據(jù)旋轉(zhuǎn)作圖的方法作圖即可;
(2)根據(jù)位似作圖的方法作圖,,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);順次連接上述各點(diǎn),得到放大的圖形.
試題解析:(1)如圖所示:
(2)如圖所示:

考點(diǎn):位似變換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知兩條線段長(zhǎng)分別為3和12,則它們的比例中項(xiàng)是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖所示,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F分別為邊AB、AD 的中點(diǎn),點(diǎn)G是CF上的一點(diǎn),使得3 CG =2 GF,則三角形BEG的面積為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO;
(3)當(dāng)AE=AC,AB=10時(shí),求線段BO的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長(zhǎng)為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證:.(這個(gè)比值
叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個(gè)等腰三角形就叫做黃金三角形.請(qǐng)你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個(gè)黃金三角形ABC.
(注:直尺沒(méi)有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對(duì)作圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4),解答下列問(wèn)題:
(1)設(shè)△APQ的面積為S,當(dāng)t為何值時(shí),S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時(shí),求t的值;′
(3)當(dāng)t為何值時(shí),△APQ是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)課上,同學(xué)們研究圖形的拼接問(wèn)題.
比如:兩個(gè)全等的等腰直角三角形紙片既能拼成一個(gè)大的等腰直角三角形(如圖1),也能拼成一個(gè)正方形(如圖2).

(1)現(xiàn)有兩個(gè)相似的直角三角形紙片,各有一個(gè)角為,恰好可以拼成另一個(gè)含有30°角的直角三角形,那么在原來(lái)的兩個(gè)三角形紙片中,較大的與較小的紙片的相似比為_(kāi)_______,請(qǐng)畫出拼接的示意圖;
(2)現(xiàn)有一個(gè)矩形恰好由三個(gè)各有一個(gè)角為的直角三角形紙片拼成,請(qǐng)你畫出兩種不同拼法的示意圖.在拼成這個(gè)矩形的三角形中,若每種拼法中最小的三角形的斜邊長(zhǎng)為,請(qǐng)直接寫出每種拼法中最大三角形的斜邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2,使,并寫出點(diǎn)A2的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖9,在△ABC中,已知點(diǎn)D在BC上,聯(lián)結(jié)AD,使得,DC=3且 ﹦1﹕2.

(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點(diǎn)C落點(diǎn)E處,AE交邊BC于點(diǎn)F,且AB∥DE,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案