拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為直線x=-1,B(1,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
(1)∵拋物線的對(duì)稱軸為直線x=-1,經(jīng)過點(diǎn)B(1,0),C(0,-3),
-
b
2a
=-1
a+b+c=0
c=-3

解得
a=1
b=2
c=-3
,
所以,二次函數(shù)的解析式是:y=x2+2x-3;

(2)如圖,∵A、B兩點(diǎn)關(guān)于對(duì)稱軸x=-1對(duì)稱,
∴點(diǎn)A(-3,0),
作直線AC交對(duì)稱軸于點(diǎn)P,點(diǎn)P即為所求,
根據(jù)三角形的三邊關(guān)系,PA-PC<AC,
所以,當(dāng)點(diǎn)P為AC與對(duì)稱軸的交點(diǎn)時(shí),點(diǎn)P到A、C兩點(diǎn)距離之差最大,
設(shè)直線BC的解析式是:y=kx+b,
k+b=0
b=-3

解得
k=3
b=-3
,
∴設(shè)直線AC的解析式是:y=3x-3,
當(dāng)x=-1時(shí),y=-6,
∴點(diǎn)P的坐標(biāo)是(-1,-6).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以正方形ABCD平行于邊的對(duì)稱軸為坐標(biāo)軸建立平面直角坐標(biāo)系,若正方形的邊長為4,求過B、M、C這三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+c(a≠0)的圖象經(jīng)過點(diǎn)A(1,-1),B(2,5),
(1)求函數(shù)y=ax2+c的表達(dá)式.
(2)若點(diǎn)C(-2,m),D(n,7)也在函數(shù)的圖象上,求點(diǎn)C的坐標(biāo);點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對(duì)稱時(shí),求拋物線C3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
(1)求這條拋物線的解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PEAC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將拋物線y=x2沿x軸正方向平移3個(gè)單位得到拋物線l,直線y=-2.
(1)求拋物線l的解析式;
(2)點(diǎn)A是拋物線l上一點(diǎn),點(diǎn)B是直線y=-2上一點(diǎn),是否存在等腰△OAB?若存在,求點(diǎn)A,B兩點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若將上題中的“沿x軸正方向平移3個(gè)單位”改為“沿x軸正方向平移n個(gè)單位”,其它條件不變,探究上題(2)中的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx-2與x軸交于點(diǎn)A(-1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)求點(diǎn)C在這條拋物線上時(shí)m的值.
(3)將線段CN繞點(diǎn)N逆時(shí)針旋轉(zhuǎn)90°后,得到對(duì)應(yīng)線段DN.
①當(dāng)點(diǎn)D在這條拋物線的對(duì)稱軸上時(shí),求點(diǎn)D的坐標(biāo).
②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對(duì)稱軸上時(shí),直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為t秒(0≤t≤4)
(1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
(2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
(3)試問是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為A(0,4)和B(-2,0),連接AB.
(1)現(xiàn)將△AOB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到△AO1B1,請(qǐng)畫出△AO1B1,并直接寫出點(diǎn)B1、O1的坐標(biāo)(注:不要求證明);
(2)求經(jīng)過B、A、O1三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)關(guān)系式,并畫出拋物線的略圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案