如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且AB∥CD,AB=4,設(shè)、的長分別為x、y,線段ED的長為z,則z(x+y)的值為    

解:如圖,過M作MG⊥AB于G,連MB,NF,

而AB=4,
∴BG=AG=2,
∴MB2﹣MG2=22=4,                
又∵大半圓M的弦與小半圓N相切于點F,
∴NF⊥AB,
∵AB∥CD,
∴MG=NF,
設(shè)⊙M,⊙N的半徑分別為R,r,
∴z(x+y)=(CD﹣CE)(π•R+π•r),  
=(2R﹣2r)(R+r)•π,              
=(R2﹣r2)•2π,
=4•2π,
=8π.            

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且AB∥CD,AB=4,設(shè)
CD
、
CE
的長分別為x、y,線段ED的長為z,則z(x+y)的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且AB∥CD,AB=10,設(shè)弧CD、弧CE的長分別為x、y,線段ED的長為z,則z(x+y)的值為
50π
50π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年安徽馬鞍山含山一中九年級第二學(xué)期數(shù)學(xué)月考試卷(解析版) 題型:解答題

如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且AB∥CD,AB=4,設(shè)、的長分別為x、y,線段ED的長為z,則z(x+y)的值為     

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆度臨沂市費縣八年級第二學(xué)期期末檢測數(shù)學(xué) 題型:填空題

(11·孝感)如圖,直徑分別為CD、CE的兩個半圓相切于點C,大半圓M的弦與小半圓N相切于點F,且AB∥CD,AB=4,設(shè)、的長分別為、,線段ED的長為,則的值為____________.

 

查看答案和解析>>

同步練習(xí)冊答案