【題目】如圖,要建一個(gè)面積為130平方米的倉(cāng)庫(kù),現(xiàn)有能圍成32米長(zhǎng)的木板,倉(cāng)庫(kù)的一邊靠墻,并在與墻垂直的一邊開一道1米寬的小門.
(1)如果墻長(zhǎng)16米,求倉(cāng)庫(kù)的長(zhǎng)和寬;
(2)如果墻長(zhǎng)a米,在離開墻9米開外倉(cāng)庫(kù)一側(cè)修條小路,那么墻長(zhǎng)至少要多少米?
【答案】(1)長(zhǎng)為13米,寬為10米;(2)至少要20米.
【解析】
(1)設(shè)長(zhǎng)方形的長(zhǎng)為x米,則寬為米,而倉(cāng)庫(kù)的面積為130m2,由此即可列出方程,解方程就可以解決問題;
(2)設(shè)長(zhǎng)方形的寬為y米(),則長(zhǎng)為米,而倉(cāng)庫(kù)的面積為130m2,由此即可列出方程,求出y,然后根據(jù)長(zhǎng)方形的長(zhǎng)a列出不等式,并解答即可.
解:(1)設(shè)倉(cāng)庫(kù)的長(zhǎng)為米,則寬為米,根據(jù)題意,得:
,
整理,得:,
解方程,得:,(不合題意,舍去),
當(dāng)時(shí),,
答:倉(cāng)庫(kù)的長(zhǎng)為13米,寬為10米;
(2)如果墻長(zhǎng)米,在離開墻9米開外倉(cāng)庫(kù)一側(cè)修條小路,那么設(shè)倉(cāng)庫(kù)的寬為米,則長(zhǎng)為米,這里,根據(jù)題意,得:,
整理,得:,
解得:,(不合題意,舍去),
∵,即,
∴,
答:墻長(zhǎng)至少要20米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出△ABC 關(guān)于 y 軸對(duì)稱的△A1B1C1并寫出坐標(biāo);
(2)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),點(diǎn)為直線和雙曲線的一個(gè)交點(diǎn),
(1)求、的值;
(2)若點(diǎn),在直線上有一點(diǎn),使得,請(qǐng)求出點(diǎn)的坐標(biāo);
(3)在雙曲線是否存在點(diǎn),使得,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,一動(dòng)點(diǎn)從出發(fā)向上移動(dòng)一個(gè)單位至處,然后向左移動(dòng)2個(gè)單位至處,再向下移動(dòng)3個(gè)單位至處,再向右移動(dòng)4個(gè)單位至處,按此繼續(xù)移動(dòng)下去,設(shè),n為正整數(shù),則__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點(diǎn)是的中點(diǎn),點(diǎn)在上.
求證: ;
如圖,若的延長(zhǎng)線交于點(diǎn),且,垂足為, ,原來其它條件不變.
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,過原點(diǎn)O的另一條直線l交雙曲線于P,Q兩點(diǎn)(點(diǎn)P在第一象限),由點(diǎn)A,B,P,Q為頂點(diǎn)組成的四邊形面積為24,則點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線與直線相交于、兩點(diǎn).過點(diǎn)作矩形交軸于點(diǎn).交軸于點(diǎn).交雙曲線于點(diǎn).若是的中點(diǎn),四邊形的面積為,則雙曲線的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有二次函數(shù),頂點(diǎn)為,與軸交于、兩點(diǎn)(在左側(cè)),易證點(diǎn)、關(guān)于直線對(duì)稱,且在直線上.過點(diǎn)作直線交直線于點(diǎn),、分別為直線和直線上的兩個(gè)動(dòng)點(diǎn),連接、、,則的最小值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,每個(gè)小正方形網(wǎng)格的邊長(zhǎng)為單位1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC 如圖所示。
(1)請(qǐng)寫出點(diǎn) A,C 的坐標(biāo);
(2)請(qǐng)作出三角形ABC 關(guān)于y軸對(duì)稱的三角形A1B1C1;
(3)求△ABC 中AB邊上的高。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com