【題目】已知雙曲線與直線相交于、兩點.過點作矩形軸于點.交軸于點.交雙曲線于點.若的中點,四邊形的面積為,則雙曲線的解析式為________

【答案】

【解析】

B點坐標為(-a,-b),因為BDy軸,BCD的中點,于是得到C點坐標為(-a,-2b).根據(jù)四邊形ODCN的面積為2b=2ab,ODB,OEN的面積均為,四邊形OBCE的面積為4.列方程即可得到結(jié)果.

解:設B點坐標為(-a,-b),因為BDy軸,BCD的中點,C點坐標為(-a,-2b).

∵四邊形ODCN的面積為2b=2ab,ODB,OEN的面積均為,四邊形OBCE的面積為4.

2ab-k=4

又∵ab=k,

2k-k=4,解得k=4;

則雙曲線的解析式為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點A、E、C在同一直線上).已知李航的身高EF1.6m,請你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,小強從圖象中得出了條信息:

;②;③時,函數(shù)取得最小值;,

其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要建一個面積為130平方米的倉庫,現(xiàn)有能圍成32米長的木板,倉庫的一邊靠墻,并在與墻垂直的一邊開一道1米寬的小門.

(1)如果墻長16米,求倉庫的長和寬;

(2)如果墻長a米,在離開墻9米開外倉庫一側(cè)修條小路,那么墻長至少要多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次蠟燭燃燒實驗中,蠟燭燃燒時剩余部分的高度ycm)是燃燒時間xh 的一次函數(shù).某蠟燭的高度為30cm,燃燒3h后,蠟燭剩余部分的高度為12cm.

1)求蠟燭燃燒時y(cm)x(h)之間的函數(shù)表達式;

2)求出蠟燭從點燃到燃盡所用的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知x+y5,xy3,求x2+y2的值;

2)已知xy5x2+y251,求(x+y2的值;

3)已知x23x10,求x2+的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AMBN,AE平分∠BAM,BE平分∠ABN,

1)求∠AEB的度數(shù).

2)如圖2,過點E的直線交射線線AM于點C,交射線BN于點D,求證:AC+BDAB;

3)如圖3,過點E的直線交射線線AM的反向延長線于點C,交射線BN于點DAB5,AC3,SABESACE2,求BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知RtABC中,AC=BC,∠C=90°,DAB邊中點,∠EDFD點旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長線)于E、F

1)當點EAC邊上時(如圖1),求證CE=BF

2)在(1)的條件下,求證:

3)當∠EDFD點旋轉(zhuǎn)到圖3的位置即點E、F分別在AC、CB邊的延長線上時,上述(2)結(jié)論是否成立?若成立,請給予證明;若不成立,又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子里裝著個黃球,個黑球和個紅球,他們除了顏色外完全相同.

小明和小穎玩摸球游戲,規(guī)定每人摸球一次再將球放回為依次游戲,若摸到黑球則小明獲勝,摸到黃球則小穎獲勝,這個游戲公平嗎?說說你的理由.

現(xiàn)在裁判向袋子中放入若干個紅球,大量重復試驗后,發(fā)現(xiàn)小明獲勝的頻率穩(wěn)定在附近,問裁判放入了多少個紅球?

查看答案和解析>>

同步練習冊答案