【題目】如圖,在圖1中,A1,B1,C1分別是△ABC的邊BC,CA,AB的中點(diǎn),在圖2中,A2,B2,C2分別是△A1B1C1的邊B1C1,C1A1,A1B1的中點(diǎn),…,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有___個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸正半軸、y軸正半軸上,AO=BO,△ABO的面積為8.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)C、D分別在x軸負(fù)半軸、y軸正半軸上(D在B點(diǎn)上方),AB⊥CD于E,設(shè)點(diǎn)D縱坐標(biāo)為t,△BCE的面積為S,求S與t的函數(shù)關(guān)系;
(3)在(2)的條件下,點(diǎn)F為BE中點(diǎn),連接OF交BC于G,當(dāng)∠FOB+∠DAE=45°時(shí),求點(diǎn)E坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點(diǎn)D2,依此類推,∠ABD4與∠ACD4的角平分線交于點(diǎn)D5,則∠BD5C的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-6x+a-2=0.
(1)如果該方程有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)如果該方程有兩個(gè)相等的實(shí)數(shù)根,求出這兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過點(diǎn)D作DE⊥AC于E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校,以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖,根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是______米;
(2)小明在書店停留了______分鐘;
(3)本次上學(xué)途中,小明一共行駛了_____米,一共用了_______分鐘;
(4)在整個(gè)上學(xué)的途中________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是____米/分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長(zhǎng)交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com