【題目】我國明代數(shù)學(xué)家程大位在他六十歲時終于完成了《外法統(tǒng)宗》的編撰.這是- -木簡明實(shí)用的數(shù)學(xué)書,書中列出了許多應(yīng)用題的數(shù)字計(jì)算

請從兩題中任選-題做答.

:有一群人分銀子,如果每人分七兩,則剩余四兩;如果每人分九兩,則還差半斤,設(shè)所分銀子共兩.根據(jù)題意列出的方程是____________ ( :明代時兩.故有“半斤八兩”這個成語)

:用九百九十九文錢共買了一千個甜果和苦果.其中四文錢可以買甜果七個,十一文錢可以買苦果九個,設(shè)買了個甜果,根據(jù)題意列出的方程是__________

【答案】

【解析】

A.根據(jù)人數(shù)相同,銀子的總數(shù)不變列方程即可.

B.求出一個甜果多少文,一個苦果多少文,根據(jù)果子的總數(shù)是1000個和錢的總數(shù)是999文,列方程即可.

A

根據(jù)題意得:

B

根據(jù)題意得:

故答案為: ;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖8,在平面直角坐標(biāo)系xOy中,A(0,8),B(0,4),點(diǎn)Cx軸的正半軸上,點(diǎn)DOC的中點(diǎn).

(1)當(dāng)BDAC的距離等于2時,求線段OC的長;

(2)如果OEAC于點(diǎn)E,當(dāng)四邊形ABDE為平行四邊形時,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1

2×(﹣24

37×1÷(﹣9+19

4)﹣22×|3|+(﹣62×

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△AFB連接EF,證明:△AED≌△AEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為學(xué)生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內(nèi)建造由兩個大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個大棚之間有間隔4米的路,設(shè)計(jì)方案如圖2,已知每個大棚的周長為44米.

(1)求每個大棚的長和寬各是多少?

(2)現(xiàn)有兩種大棚造價的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價的20%,試問選擇哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)來臨之際,學(xué)校準(zhǔn)備購進(jìn)一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.

(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?

(2)學(xué)校準(zhǔn)備購進(jìn)這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請?jiān)O(shè)計(jì)出最省錢的購買方案,并求出此時的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,貴陽市某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了利用三角函數(shù)測高后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?/span>30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假定甲、乙兩人在一次賽跑中,路程S與時間T的關(guān)系在平面直角坐標(biāo)系中如圖所示,請結(jié)合圖形和數(shù)據(jù)回答問題:

1)這是一次 米賽跑;

2)甲、乙兩人中先到達(dá)終點(diǎn)的是 ;

3)乙在這次賽跑中的速度為 ;

4)甲到達(dá)終點(diǎn)時,乙離終點(diǎn)還有    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動點(diǎn)軸的上方,且滿足.

(1)若點(diǎn)在這個反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);

(2)連接,求的最小值;

(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請你直接寫出滿足條件的所有點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案