如圖,長方形紙片ABCD中,BC=數(shù)學公式,DC=1,將它沿對角線BD折疊,使點C落在點F處,則圖中陰影部分的面積是多少?

解:∵四邊形ABCD是矩形,
∴∠C=90°,AD∥BC,AD=BC=
∴∠EDB=∠DBC,
由折疊的性質(zhì),可得BF=BC=AD=,∠EBD=∠DBC,
∴∠EBD=∠EDB,
∴BE=DE,
∴AE=EF,
設AE=x,則EF=x,DE=AD-AE=BC-AE=-x
∵ED2=DF2+EF2,即(-x)2=12+x2,
解得x=
∴S△DEF=•EF•DF=
分析:要求陰影部分的面積就要先求得它的底和高,這個三角形的高就是DF=CD,DE+EF=,由此關系就可利用勾股定理求出AE及EF的長,從而求三角形的面積.
點評:此題的關鍵是利用勾股定理求三角形的底和高,從而求三角形的面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,長方形紙片ABCD中,AD=9,AB=3,將其折疊,使其點D與點B重合,點C至點C′,折痕為EF.求△BEF的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,長方形紙片ABCD,沿折痕AE折疊邊AD,使點D落在BC邊上的點F處,已知AB=8,S△ABF=24,求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東城區(qū)一模)如圖,長方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點按順時針方向旋轉(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點按逆時針方向旋轉(zhuǎn)180°,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無縫且不重疊)
則拼成的這個四邊形紙片的周長的最小值和最大值分別為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,長方形紙片ABCD中,AD=BC=7,沿對稱軸EF折疊,若折疊后A′B′與C′D′間的距離為6,則原紙片的寬AB=
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,長方形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y)軸上,連結(jié)OB,將紙片OABC沿OB折疊,使點A落在點A′處,A′B與y軸交于點F,且知OA=1,AB=2.
(1)分別求出OF的長度和點A′坐標;
(2)設過點B的雙曲線為y=
kx
(x>0),則k=
2
2
;
(3)如果D為反比例函數(shù)在第一象限圖象上的點,且D點的橫坐標為2,在x軸上求一點P,使PB+PD最。

查看答案和解析>>

同步練習冊答案