【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合).

(1)若點(diǎn)A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當(dāng)圓心O在∠BAD的內(nèi)部時(shí),求∠OBA+ODA的度數(shù);

②當(dāng)圓心O在∠BAD的外部時(shí),請(qǐng)畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.

【答案】160°;(2①60°②∠OBA=∠ODA+60°

【解析】

試題(1)連接BD,首先圓周角定理,求出∠BAD的度數(shù)是多少;然后根據(jù)三角形的內(nèi)角和定理,求出∠0BD∠ODB的度數(shù)和是多少;最后在△ABD中,用180°減去∠BAD、∠0BD、∠ODB的度數(shù)和,求出∠OBA+∠ODA等于多少即可.

2首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.

首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠OBA=∠ODA+60°即可.

試題解析:解:(1)如圖1,連接BD

∵∠BOD=120°,

∴∠BAD=120°÷2=60°

∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,

∴∠OBA+∠ODA=180°﹣∠0BD+∠ODB﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°

故答案為:60;

2如圖2,

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD∠OBC=∠ODC,

∵∠BAD+∠BCD=180°∠BAD=∠B0D,

∠B0D+∠B0D=180°,

∴∠B0D=120°,∠BAD=120°÷2=60°,

∴∠OBC=∠ODC=180°﹣120°=60°,

∵∠ABC+∠ADC=180°,

∴∠OBA+∠ODA=180°﹣∠OBC+∠ODC=180°﹣60°+60°=180°﹣120°=60°

如圖3,

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD,∠OBC=∠ODC,

∵∠BAD+∠BCD=180°∠BAD=∠B0D,

∠B0D+∠B0D=180°,

∴∠B0D=120°,∠BAD=120°÷2=60°

∴∠OAB=∠OAD+∠BAD=∠OAD+60°,

∵OA=OD,OA=OB

∴∠OAD=∠ODA,∠OAB=∠OBA,

∴∠OBA=∠ODA+60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B在直線l上,AB=10cm,⊙B的半徑為1cm,點(diǎn)C在直線l上,過(guò)點(diǎn)C作直線CD∠DCB=30°,直線CDA點(diǎn)出發(fā)以每秒4cm的速度自左向右平行運(yùn)動(dòng),與此同時(shí),⊙B的半徑也不斷增大,其半徑r(cm)與時(shí)間t(秒)之間的關(guān)系式為r=1+t(t≥0),當(dāng)直線CD出發(fā)________秒直線CD恰好與⊙B相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點(diǎn),以CE為直徑作O,AB與O相切于點(diǎn)D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(a+2)x2﹣2ax+a=0有兩個(gè)不相等的實(shí)數(shù)根x1和x2, 拋物線y=x2﹣(2a+1)x+2a﹣5與x軸的兩個(gè)交點(diǎn)分別為位于點(diǎn)(2,0)的兩旁,若|x1|+|x2|=2,則a的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠A=25°,以點(diǎn)C為圓心,BC為半徑的圓交AB于點(diǎn)D,交AC于點(diǎn)E,則的度數(shù)為( 。

A. 25° B. 30° C. 50° D. 65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)E,F分別在線段AD及其延長(zhǎng)線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE;③AB=AC;

從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解高峰時(shí)段37路公交車從總站乘該路車出行的人數(shù),隨機(jī)抽查了10個(gè)班次乘該路車人數(shù),結(jié)果如下:16,25,18,2725,3028,29,25,27

(1)請(qǐng)求出這10個(gè)班次乘該路車人數(shù)的平均數(shù)、眾數(shù)與中位數(shù);

(2)如果37路公交車在高峰時(shí)段從總站共發(fā)出50個(gè)班次,根據(jù)上面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車出行的乘客共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形紙片,對(duì)其進(jìn)行如下操作:

翻折,使得點(diǎn)與點(diǎn)重,折痕為;把翻折,使得點(diǎn)與點(diǎn)重合,折痕為 (如圖2),連結(jié).設(shè)兩條折痕的延長(zhǎng)線交于點(diǎn)

(1)請(qǐng)?jiān)趫D2中將圖形補(bǔ)充完整,并求的度數(shù);

(2)四邊形是菱形嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABOCAB,AC分別與⊙O相切于點(diǎn)D、E,若點(diǎn)DAB的中點(diǎn),則∠DOE=__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案