解:(1)C
1、C
2、C
3、C
4,如圖:
(2)D
1、D
2、D
3、D
4等7點,如圖:
(3)問題(2)所得到的等腰三角形中沒有等邊三角形.在8*8格點圖乃至任意大的格點圖中,都沒有格點為頂點的等邊三角形.
說理方式很多,如可以將其中一個頂點選為坐標原點,分析另外兩個頂點坐標的奇偶性,分別給予排除;也可以將其中一個頂點選為坐標原點后,分別設另兩個頂點的坐標為(a,b),(c,d),證明a
2+b
2=c
2+d
2=(a-c)
2+(b-d)
2無整數(shù)解.
(4)問題(2)所得到的等腰三角形中有以AB為腰的等腰直角三角形,有以AB為底的等腰直角三角形.
一般地,在充分大的格點圖中,對于任意給定的兩個格點,一定存在以這兩個格點所在線段為腰的等腰直角三角形.如果所給定兩個格點的坐標為(a,b),(c,d),符合條件的第3個點有幾個,如其中一個可以是(a+d-b,b+a-c).
在充分大的格點圖中,對于任意給定的兩個格點,不一定存在以這兩個格點所在線段為底的等腰直角三角形.如果所給定兩個格點的坐標為(a,b),(c,d),只有當a+d與b+c具有相同的奇偶性時,才存在以該兩點所在線段為底的等腰直角三角形.
分析:(1)根據(jù)三角形面積相等即可找出要求的點C;
(2)根據(jù)等腰三角形兩腰長相等即可得出答案;
(3)問題(2)所得到的等腰三角形中沒有等邊三角形.在8*8格點圖乃至任意大的格點圖中,都沒有格點為頂點的等邊三角形.
(4)問題(2)所得到的等腰三角形中有以AB為腰的等腰直角三角形,有以AB為底的等腰直角三角形.一般地,在充分大的格點圖中,對于任意給定的兩個格點,一定存在以這兩個格點所在線段為腰的等腰直角三角形.
點評:本題考查了等腰三角形的性質(zhì)及三角形的面積,難度較大,關鍵是掌握等腰三角形的等邊對等角定理.