【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,AB∥DC,E、M、F、N分別是邊AB、BC、CD、DA上的切點.
(1)求證:AB+CD=AD+BC
(2)求∠AOD的度數(shù).
【答案】(1)證明見解析;(2)90°.
【解析】
(1)根據(jù)切線長定理可證得AE=AN,BE=BM,DF=DN,CF=CM,進而證明AB+DC=AD+BC;
(2)連OE、ON、OM、OF,通過證明△OAE≌△OAN,得到∠OAE=∠OAN.同理:∠ODN=∠ODE,再利用平行線的性質(zhì):同旁內(nèi)角互補即可求出∠AOD的度數(shù).
(1)證明:∵⊙O切梯形ABCD于E、M、F、N,由切線長定理:AE=AN,BE=BM,DF=DN,CF=CM,
∴AE+BE+DF+CF=AN+BM+DN+CM,
∴AB+DC=AD+BC
(2)連OE、ON、OM、OF,
∵OE=ON,AE=AN,OA=OA,
∴△OAE≌△OAN,
∴∠OAE=∠OAN.
同理,∠ODN=∠ODF.
∴∠OAN+∠ODN=∠OAE+∠ODE.
又∵AB∥DC,∠EAN+∠CDN=180°,
∴∠OAN+∠ODN=×180°=90°,
∴∠AOD=180°﹣90°=90°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點P在斜邊AB上 (不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF.隨著P點在邊AB上位置的改變,EF的長度是否也會改變?若不變,請你求EF的長度;若有變化,請你求EF的變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:
①2a+b=0;②a+c>b;③拋物線與x軸的另一個交點為(3,0);④abc>0.其中正確的結(jié)論的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與坐標軸相交于A,B兩點,與反比例函數(shù)y=在第一象限交點C(1,a).求:
(1)反比例函數(shù)的解析式;
(2)△AOC的面積;
(3)不等式x+2﹣<0的解集(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標有數(shù)字1,3,5;第二組卡片正面分別標有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認為這個游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數(shù),請解答下列問題:
(1)求的值;
(2)這個幾何體最少有幾個小立方體搭成,最多有幾個小立方體搭成;
(3)當時畫出這個幾何體的左視圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA,OB的長是關于x的一元二次方程的兩個根,且OA>OB.
(1)若點E為x軸上的點,且△AOE的面積為.
求:①點E的坐標;②證明:△AOE∽△DAO;
(2)若點M在平面直角坐標系中,則在直線AB上是否存在點F,使以A,C,F,M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,△ABC內(nèi)接于⊙O,AB=AC,BD為⊙O的弦,且AB∥CD,過點A作⊙O的切線AE與DC的延長線交于點E,AD與BC交于點F.
(1)求證:四邊形ABCE是平行四邊形;
(2)若AE=6,CD=5,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,點A,D在⊙O上,∠B=2∠CAD,在BC的延長線上有一點P,使得∠P=∠ACB,弦AD交直徑BC于點E.
(1)求證:DP與⊙O相切;
(2)判斷△DCE的形狀,并證明你的結(jié)論;
(3)若CE=2,DE=,求線段BC的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com