【題目】如圖,在平行四邊形ABCD中,AB=6cm,AD=10cm,點(diǎn)P在AD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),同時(shí)點(diǎn)Q也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t為何值時(shí),以P,D,Q,B為頂點(diǎn)的四邊形是平行四邊形?
【答案】當(dāng)運(yùn)動(dòng)時(shí)間為0秒或4秒或秒或8秒時(shí),以P、D、Q、B四點(diǎn)組成的四邊形為平行四邊形
【解析】
由四邊形ABCD為平行四邊形可得出PD∥BQ,結(jié)合平行四邊形的判定定理可得出當(dāng)PD=BQ時(shí)以P、D、Q、B四點(diǎn)組成的四邊形為平行四邊形,分四種情況考慮,在每種情況中由PD=BQ即可列出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:∵四邊形ABCD為平行四邊形,
∴PD∥BQ.
若要以P、D、Q、B四點(diǎn)組成的四邊形為平行四邊形,則PD=BQ.
設(shè)運(yùn)動(dòng)時(shí)間為t.
當(dāng)0≤t≤時(shí),AP=t,PD=10﹣t,CQ=4t,BQ=10﹣4t,
∴10﹣t=10﹣4t,
3t=0,
∴t=0;
當(dāng)<t≤5時(shí),AP=t,PD=10﹣t,BQ=4t﹣10,
∴10﹣t=4t﹣10,
解得:t=4;
當(dāng)5<t≤時(shí),AP=t,PD=10﹣t,CQ=4t﹣20,BQ=30﹣4t,
∴10﹣t=30﹣4t,
解得:t=;
當(dāng)<t≤10時(shí),AP=t,PD=10﹣t,BQ=4t﹣30,
∴10﹣t=4t﹣30,
解得:t=8.
綜上所述:當(dāng)運(yùn)動(dòng)時(shí)間為0秒或4秒或秒或8秒時(shí),以P、D、Q、B四點(diǎn)組成的四邊形為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,長(zhǎng)方形ABCD中分別沿AF、CE將AC兩側(cè)折疊,使點(diǎn)B、D分別落在AC上的G、H處,則線段AE______CF.(填“>”“<”或“=”)
(2)如圖2,在平行四邊形ABCD中,△ABF≌△CDE,AB=10cm,BF=6cm,AF=8cm,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.
①若點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)點(diǎn)P在FB上運(yùn)動(dòng),而點(diǎn)Q在DE上運(yùn)動(dòng)時(shí),若四邊形APCQ是平行四邊形,求此時(shí)t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),利用備用圖探究,當(dāng)a與b滿足什么數(shù)量關(guān)系時(shí),四邊形APCQ是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3副乒乓球拍和2副羽毛球拍共需204元.
(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元?
(2)若學(xué)校購買乒乓球拍和羽毛球拍共30副,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,點(diǎn)在軸上,將三角形沿軸負(fù)方向平移,平移后的圖形為三角形,且點(diǎn)的坐標(biāo)為.
(1)直接寫出點(diǎn)的坐標(biāo)為 ;
(2)在四邊形中,點(diǎn)從點(diǎn)出發(fā),沿“”移動(dòng),若點(diǎn)的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒,回答下問題:
①求點(diǎn)在運(yùn)動(dòng)過程中的坐標(biāo)(用含的式子表示,寫出過程);
②當(dāng) 秒時(shí),點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
③當(dāng)秒秒時(shí),設(shè),,,試問之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含的式子表式,寫出過程;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“雙劍合璧,天下無敵”,其意思是指兩個(gè)人合在一起,取長(zhǎng)補(bǔ)短,威力無比.在二次根式中也常有這種相輔相成的“對(duì)子”,如:,,它們的積中不含根號(hào),我們說這兩個(gè)二次根式是互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式,于是,二次根式除法可以這樣解:,.
像這樣通過分子、分母同乘一個(gè)式子把分母中的根號(hào)化去的方法,叫做分母有理化.
解決下列問題:
(1)將分母有理化得 ;的有理化因式是 ;
(2)化簡(jiǎn):= ;
(3)化簡(jiǎn):……+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:
如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
因?yàn)?/span>EF∥AD,
所以∠2= .( )
又因?yàn)椤?/span>1=∠2,
所以∠1=∠3.( )
所以AB∥ .( )
所以∠BAC+ =180°( )
又因?yàn)椤?/span>BAC=70°,
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費(fèi)者的喜愛,各種品牌相繼投放市場(chǎng),一汽貿(mào)公司經(jīng)銷某品牌新能源汽車,去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價(jià)格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1﹣5月份每輛車的銷售價(jià)格是多少萬元?設(shè)今年1﹣5月份每輛車的銷售價(jià)格為x萬元.則根據(jù)題意,可列方程____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系(每格的寬度為1)中,已知點(diǎn)A的坐標(biāo)是,點(diǎn)B的坐標(biāo)是,
(1)在直角坐標(biāo)平面中畫出線段AB;
(2)B點(diǎn)到原點(diǎn)O的距離是 ;
(3)將線段AB沿軸的正方向平移4個(gè)單位,畫出平移后的線段A1BI,并寫出點(diǎn)A1、B1的坐標(biāo).
(4)求△A1B B1的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com