【題目】某校學(xué)生會(huì)決定從三名學(xué)生會(huì)干事中選拔一名干事,對(duì)甲、乙、丙三名候選人進(jìn)行了筆試和面試,三人的測(cè)試成績(jī)?nèi)缦卤硭荆?

測(cè)試項(xiàng)目

測(cè)試成績(jī)/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對(duì)三人進(jìn)行民主測(cè)評(píng),三人得票率(沒(méi)有棄權(quán),每位同學(xué)只能推薦1人)如扇形統(tǒng)計(jì)圖所示,每得一票記1分.

(1)分別計(jì)算三人民主評(píng)議的得分;
(2)根據(jù)實(shí)際需要,學(xué)校將筆試、面試、民主評(píng)議三項(xiàng)得分按4:3:3的比例確定個(gè)人成績(jī),三人中誰(shuí)的得分最高?

【答案】
(1)解:甲民主評(píng)議的得分是:

200×25%=50(分);

乙民主評(píng)議的得分是:

200×40%=80(分);

丙民主評(píng)議的得分是:

200×35%=70(分).


(2)解:甲的成績(jī)是:

(75×4+93×3+50×3)÷(4+3+3)

=729÷10

=72.9(分)

乙的成績(jī)是:

(80×4+70×3+80×3)÷(4+3+3)

=770÷10

=77(分)

丙的成績(jī)是:

(90×4+68×3+70×3)÷(4+3+3)

=774÷10

=77.4(分)

∵77.4>77>72.9,

∴丙的得分最高.


【解析】(1)根據(jù)百分?jǐn)?shù)乘法的意義,分別用200乘以三人的得票率,求出三人民主評(píng)議的得分各是多少即可.(2)首先根據(jù)加權(quán)平均數(shù)的計(jì)算方法列式計(jì)算,分別求出三人的得分各是多少;然后比較大小,判斷出三人中誰(shuí)的得分最高即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DBC上一點(diǎn),∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在由6個(gè)邊長(zhǎng)為1的小正方形組成的方格中:

(1)如圖(1),A、B、C是三個(gè)格點(diǎn)(即小正方形的頂點(diǎn)),判斷ABBC的關(guān)系,并說(shuō)明理由;

(2)如圖(2),連結(jié)三格和兩格的對(duì)角線(xiàn),求∠α+β的度數(shù)(要求:畫(huà)出示意圖并給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生體質(zhì)情況,從各年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,每個(gè)學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)對(duì)應(yīng)為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí).統(tǒng)計(jì)員在將測(cè)試數(shù)據(jù)繪制成圖表時(shí)發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計(jì)人,良好漏統(tǒng)計(jì)人,于是及時(shí)更正,從而形成如下圖表.請(qǐng)按正確數(shù)據(jù)解答下列各題:

(1)填寫(xiě)統(tǒng)計(jì)表.

(2)根據(jù)調(diào)整后數(shù)據(jù),補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該校共有學(xué)生人,請(qǐng)你估算出該校體能測(cè)試等級(jí)為優(yōu)秀的人數(shù).

學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)表

體能等級(jí)

調(diào)整前人數(shù)

調(diào)整后人數(shù)

優(yōu)秀



良好



及格



不及格



合計(jì)



學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),,,從三角板的刻度可知,小聰很快就知道了砌墻磚塊的厚度的平方(每塊磚的厚度相等)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線(xiàn)AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為a,則重疊部分四邊形EMCN的面積為(

A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)AB,如下圖.電信部門(mén)要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)AB的距離必須相等,到兩條公路l1l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫(xiě)出畫(huà)法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料并解決有關(guān)問(wèn)題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x2|時(shí),可令x+1=0x2=0,分別求得x=1,x=2(稱(chēng)﹣12分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x﹣1;②﹣1≤x2;③x≥2

從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x﹣1時(shí),原式=﹣x+1x﹣2=﹣2x+1;

當(dāng)﹣1≤x2時(shí),原式=x+1﹣x﹣2=3;

當(dāng)x≥2時(shí),原式=x+1+x2=2x1.綜上討論,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線(xiàn)上一點(diǎn),N是DCP的平分線(xiàn)上一點(diǎn).若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請(qǐng)你完成余下的證明過(guò)程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線(xiàn)上一點(diǎn),則當(dāng)AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請(qǐng)你作出猜想:當(dāng)AMN= °時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案