【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE,EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長(zhǎng)為(

A.
B.2
C.3
D.2

【答案】C
【解析】解:連接CC1

Rt△ABE中,∠BAE=30°,AB= ,
易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,
由AD∥BC,那么∠C1AE=∠AEB=60°,
所以△AEC1為等邊三角形,
那么△CC1E也為等邊三角形,
那么EC=EC1=AE=2,
∴BC=BE+EC=3,
故選C.
【考點(diǎn)精析】通過靈活運(yùn)用翻折變換(折疊問題),掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣2x=0的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.“買一張電影票,座位號(hào)為偶數(shù)”是必然事件
B.若甲、乙兩組數(shù)據(jù)的方差分別為s =0.3、s =0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
C.一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5
D.若某抽獎(jiǎng)活動(dòng)的中獎(jiǎng)率為 ,則參加6次抽獎(jiǎng)一定有1次能中獎(jiǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解某個(gè)年級(jí)的學(xué)習(xí)情況,在這個(gè)年級(jí)抽取了50名學(xué)生,對(duì)某學(xué)科進(jìn)行測(cè)試,將所得成績(jī)(成績(jī)均為整數(shù))整理后,列出表格:

分組

50~59

60~69

70~79

80~89

90~99

頻率

0.04

0.04

0.16

0.34

0.42

(1)本次測(cè)試90分以上的人數(shù)有________人;(包括90)

(2)本次測(cè)試這50名學(xué)生成績(jī)的及格率是________;(60分以上為及格,包括60)

(3)這個(gè)年級(jí)此學(xué)科的學(xué)習(xí)情況如何?請(qǐng)?jiān)谙铝腥齻(gè)選項(xiàng)中,選一個(gè)填在題后的橫線上________

A.好 B.一般 C.不好

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A1 (1,1),A2 (2,4),A3 (3,9),A4 (4,16),…,用你發(fā)現(xiàn)的規(guī)律確定點(diǎn)A10的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B為反比例函數(shù)圖像上的兩點(diǎn),A、B兩點(diǎn)坐標(biāo)分別為()、()(mn),連接AB并延長(zhǎng)交軸于點(diǎn)C.

(1)求的值;

(2)若B為AC的中點(diǎn),求的值;

(3)過B點(diǎn)作OA的平行線交軸于(,0),若為整數(shù),求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)F(2 ,0),直角GF交y軸正半軸于點(diǎn)G,且∠GFO=30°.

(1)請(qǐng)直接寫出點(diǎn)G的坐標(biāo);
(2)若⊙O的半徑為1,點(diǎn)P是直線GF上的動(dòng)點(diǎn),直線PA、PB分別與⊙O相切于點(diǎn)A、B.
①求切線長(zhǎng)PB的最小值;
②在直線GF上是否存在點(diǎn)P,使得∠APB=60°?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2014次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,則B2014的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案