如圖在平面直角坐標系中,M為x軸上一點,⊙M交x軸于A、B兩點,交y軸于C、D兩點,P為
BC
上的一個動點,CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點坐標;
(2)當點P在
BC
上運動時,線段AQ的長是否改變?若不變,請求出其長度;若改變,請說明理由.(提示:連接AC).
(3)當點P在
BC
上運動時,是否存在這樣的點P,使CQ所在直線經(jīng)過點M?若存在請直接寫出點P的坐標.
分析:(1)連接MC,由A、M的坐標可得出OA、OM、以及MA的值,再在Rt△OCM中,OC=
3
,從而求出點C的坐標;
(2)作輔助線,連接AC,根據(jù)圓周角推論,等弧所對的圓周角相等,可得:∠ACD=∠P,又CQ平分∠OCP,可得:∠PCQ=∠OCQ,故:∠ACD+∠OCQ=∠PCQ+∠P,即∠ACQ=∠AQC,所以AQ=AC=2為定值;
(3)假設存在這樣的點P滿足條件,則點C、Q、M三點共線,所以CM平分平分∠PCD.由特殊角的三角形函數(shù)值求得∠OCM=30°,則易求∠DCP=60°.據(jù)此可以求得點P的坐標.
解答:解:(1)如圖1,連接MC.
∵A(-1,0),M(1,0),
∴OA=OM=1,MA=CM=2.
在Rt△OCM中,OM=1,CM=2,
根據(jù)勾股定理得:OC=
CM2-OM2
=
3
,
∴點C的坐標是(0,
3
);

(2)如圖1,連接AC.當P點運動時,線段AQ的長度不改變.理由如下:
由垂徑定理知:
AC
=
AD
,
∴∠P=∠ACD,
∵CQ平分∠PCD,
∴∠P+∠PCQ=∠ACD+∠DCQ,
即:∠AQC=∠ACQ,
∴AQ=AC.
在Rt△OCA中,OC=
3
,OA=1,
∴AC=2.即線段AQ的長度為2.

(3)當點P在
BC
上運動時,存在這樣的點P,使CQ所在直線經(jīng)過點M.理由如下:
假設當點P在
BC
上運動時,存在這樣的點P,使CQ所在直線經(jīng)過點M.則點C、Q、M三點共線,
∵CQ平分∠PCD,
∴CM平分平分∠PCD.
在直角△OCM中,OM=1,OC=
3
,則tan∠OCM=
OM
OC
=
3
3
,
∴∠OCM=30°,
∴∠MCP=∠MPC=30°.
∴∠CMP=180°-2×30°=120°,
∴∠AMC=60°.
又∵∠APC=
1
2
∠AMC=30°,
∴∠APC=∠MPC,則點M、Q重合,即P與點B重合,
∴AP=4,
∴AQ=AM=2,這與線段AQ的長是2相一致,
∴當點P在
BC
上運動時,存在這樣的點P,使CQ所在直線經(jīng)過點M,此時P(3,0).
點評:本題考查圓的綜合題.解此類問題一般要把半徑、弦心距、弦的一半構建在一個直角三角形里,運用勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖在平面直角坐標系中,△AOB的頂點分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關于x軸成軸對稱,則C點坐標為
(0,-4)
;
②將△AOB繞AB的中點D逆時針旋轉90°得△EGF,則點A的對應點E的坐標為
(3,3)
;
③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在平面直角坐標系xOy中,點A的坐標為(2,0),以點A為圓心,2為半徑的圓與x軸交于O,B兩點,C為⊙A上一點,P是x軸上的一點,連接CP,將⊙A向上平移1個單位長度,⊙A與x軸交于M、N,與y軸相切于點G,且CP與⊙A相切于點C,∠CAP=60°.請你求出平移后MN和PO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,且點A(0,2),點C(-1,0),如圖所示點B在拋物線y=ax2+ax-2上.
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°到達△AB′C′的位置,請寫出點B′坐標
(1,-1)
(1,-1)
,點C′坐標
(2,1)
(2,1)
;判斷點B′
,C′
(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案