精英家教網 > 初中數學 > 題目詳情

【題目】小明從二次函數y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:①abc0 ; 2a3b=0 ; b24ac0;④a+b+c0; 4bc.則其中結論正確的個數是(  )

A.2B.3C.4D.5

【答案】B

【解析】

由拋物線的開口方向判斷a0的關系,由拋物線與y軸的交點判斷c0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

①因為函數圖像與y軸的交點在y軸的負半軸可知,c<0,

由函數圖像開口向上可知,a>0,

由函數的對稱軸在x的正半軸上可知,,故b<0

綜上可知,abc>0;故此選項正確;

②因為函數的對稱軸為,故2a=-3b,即2a+3b=0;故此選項錯誤;

③因為圖像與x軸有兩個交點,所以,故此選項正確;

④把x=1代入y=ax2+bx+c得:a+b+c<0,故此選項錯誤;

⑤當x=2時,y=4a+2b+c=2×(-3b+2b+c=c-4b

而點(2,c-4b)在第一象限,

c-4b>0,故此選項正確;

∴其中正確的有①③⑤;

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,BC=10,AE=2,連接BE、CE,線段CD上有一點H,將△EDH沿直線EH折疊,折疊后點D落在EC上的點D′處,若D′NAD于點N,與EH交于點M.則①△D′MH與△CBE都是等腰三角形;②∠BEH為直角;③DH長度為,④;以上說法正確的個數有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現,若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價/箱之間的函數關系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數關系式.

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BAD是由BEC在平面內繞點B旋轉60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉一定角度后得到△ABE,如圖所示,如果AF5AB9.

(1)求:DE的長度;

(2)求證:BE⊥DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店銷售一種成本為的水產品,若按銷售,一個月可售出,售價毎漲元,月銷售量就減少

寫出月銷售利潤(元)與售價(元)之間的函數表達式;

當售價定為多少元時,該商店月銷售利潤為元?

當售價定為多少元時會獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(以下簡稱世園會”)429日至107日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會、愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)問題發(fā)現

如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接 CD.

(1)①求的值;②求∠ACD的度數.

(2)拓展探究

如圖 2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B 的數量關系以及PB與CD之間的數量關系,并說明理由.

(3)解決問題

如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請直接寫出CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】速滑運動受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺,已知,滑臺的高米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.

1)求新坡面的坡角及的長;

2)原坡面底部的正前方米處是護墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護墻米。請問新的設計方案能否通過,試說明理由(參考數據:

查看答案和解析>>

同步練習冊答案