【題目】凈覺寺享有“家東第一寺”的美譽,是一座規(guī)模較大,布局嚴顏,結(jié)構(gòu)合理,獨具一格的古建筑群體,被國務院批準列入第六批全國重點文物保護單位名單,某校社會實踐小組為了測量寺內(nèi)一古塔的高度,在地面上處垂直于地面豎立了高度為米的標桿,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上,測得米,將標桿向后平移到點處,這時地面上的點,標桿的頂端點,古塔的塔尖點正好在同一直線上(點,點,點,點與古塔底處的點在同一直線上)這時測得米,米,請你根據(jù)以上數(shù)據(jù),計算古塔的高度.

【答案】答案見解析.

【解析】

易知EDC∽△EBA,FHG∽△FBA,可得 , ,因為DC=HG,推出,列出方程求出CA=40(米),由,可得,由此即可解決問題.

解:

,

,

又∵DC=HG

,

解得:

,,

解得:,

答:塔的高度米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對稱軸為x=﹣1,且拋物線經(jīng)過 A1,0),C0,3)兩點,與x軸交于點B

1)求拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求此時點M的坐標;

3)設點P為拋物線對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?

(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對應值如表

x

1

0

1

3

y

1

3

5

3

下列結(jié)論:

ac<0;

當x>1時,y的值隨x值的增大而減小.

3是方程ax2+(b1)x+c=0的一個根;

1<x<3時,ax2+(b1)x+c>0.

其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)寫出一個滿足條件的m的值,并求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,,且于點,點分別是邊上的動點,且.

①求證:四邊形是平行四邊形;

②當為何值時,四邊形是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點OAC、BD的長()是方程的兩個根.P從點A出發(fā),以每秒1個單位的速度沿A→O→B→A的方向運動,運動時間為t(秒).

1)求ACBD的長;

2)求當AP恰好平分時,點P運動時間t的值;

3)在運動過程中,是否存在點P,使是等腰三角形?若存在,請求出運動時間t的值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AC、AB的中點,CFABED的延長線于點F,連接AF、CE.

(1)求證:四邊形BCEF是平行四邊形;

(2)△ABC滿足什么條件時,四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?

(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

同步練習冊答案