【題目】如圖,直線ABCD、MN相交與點OFOBO,OM平分∠DOF

1)請直接寫出圖中所有與∠AON互余的角:

2)若∠AOC=FOM,求∠MOD與∠AON的度數(shù).

【答案】(1)∠FOM,∠MOD,∠CON;(220°,70°

【解析】

1)根據(jù)垂直的定義可得∠BOF=AOF=90°,由角平分線的定義和對頂角相等可得與∠AON互余的角有:∠FOM,∠MOD∠CON;
2)設∠MOD的度數(shù)為,用含x的式子表示出∠FOD和∠AOC的度數(shù),然后由∠AOC=BOD,得出∠FOD+∠AOC=90°,據(jù)此列方程求解,再由(1)中∠MOD∠AON互余可得出∠AON的度數(shù).

解:(1)∵FOBO,∴∠BOF=AOF=90°,
∴∠BOM+FOM=90°,

又∠BOM=AON,∴∠AON+FOM=90°.
OM平分∠DOF,∴∠DOM=FOM,
又∵∠DOM=CON,
∴與∠AON互余的角有:∠FOM,∠MOD,∠CON

2)設∠MOD的度數(shù)為x°,

OM平分∠FOD,

∴∠MOD=FOM=x°,

∴∠FOD=2x°,∠AOC=FOM=°,

又∵FOBO,∠AOC=BOD,

∴∠FOD+AOC=90°,

2x+=90

解得:x=20

即∠MOD=20°,

由(1)可知∠MOD與∠AON互余,

∴∠AON=90°-MOD=90°-20°=70°.

故∠MOD的度數(shù)為20°,∠AON的度數(shù)為70°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點站為張家口南站,全長174千米.

1)根據(jù)資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結果精確到個位);

2)京張高鐵建成后,將是世界上第一條設計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設計時速運行,那么每站(不計起始站和終點站)停靠的平均時間是多少分鐘?(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的423日是世界讀書日,今年其主題是今天你讀了嗎,某學校為了解八年紡學生的課外閱讀情況,隨機抽查部分學生,并對其4月份的課外閱讀量進行統(tǒng)計分析,繪制成如圖所示的統(tǒng)計圖數(shù)據(jù)不完整

根據(jù)圖示信息,解答下列問題:

求被抽查學生的人數(shù)及課外閱讀量的眾數(shù);

在扇形統(tǒng)計圖中填寫的值,并將條形統(tǒng)計圖補充完整;

若規(guī)定:4月份閱讀3本以上3課外書籍者為完成閱讀任務,據(jù)此估計該校八年級600名學生中,完成4月份課外閱讀任務的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.

(1)求證:∠D=2∠A;

(2)若HB=2,cosD=,請求出⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校餐廳計劃購買12張餐桌和一批餐椅,現(xiàn)從甲、乙兩商場了解到:同一型號的餐桌報價每張均為200元,餐椅報價每把均為50元.甲商場稱:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌椅均按報價的八五折銷售.那么多少餐椅,到甲商場購買更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場去年計劃生產(chǎn)玉米和小麥共200噸.采用新技術后,實際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場去年實際生產(chǎn)玉米、小麥各多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,∠C=90°.

(1)如圖1,在邊BC上求作點P,使得點P到AB的距離等于點P到點C的距離.(尺規(guī)作圖,保留痕跡)

(2)如圖2,請利用沒有刻度的直尺和圓規(guī)在線段AB上找一點F,使得點F到AC的距離等于FB(注:不寫作法,保留痕跡,對圖中涉及到點用字母進行標注)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCDAD=12AB=9,EAD的中點,GDC上一點,連接BE,BG,GE,并延長GEBA的延長線于點F,GC=5

1)求BG的長度;

2)求證:是直角三角形

3)求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P③作射線AP,交邊CD于點Q,若DQ=2QC,BC=2,則平行四邊形ABCD的周長為( ).

A.6B.8C.10D.12.

查看答案和解析>>

同步練習冊答案