【題目】在△ABC中,∠B=45°,∠C=30°,點(diǎn)D是BC上一點(diǎn),連接AD,過(guò)點(diǎn)A作AG⊥AD,在AG上取點(diǎn)F,連接DF.延長(zhǎng)DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2 ,求BC的長(zhǎng);
(2)如圖1,當(dāng)點(diǎn)G在AC上時(shí),求證:BD= CG;
(3)如圖2,當(dāng)點(diǎn)G在AC的垂直平分線上時(shí),直接寫出 的值.
【答案】
(1)
解:如圖1中,過(guò)點(diǎn)A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
在RT△AHB中,∵AB=2 ,∠B=45°,
∴BH=ABcosB=2 × =2,
AH=ABsinB=2,
在RT△AHC中,∵∠C=30°,
∴AC=2AH=4,CH=ACcosC=2 ,
∴BC=BH+CH=2+2
(2)
證明:如圖1中,
過(guò)點(diǎn)A作AP⊥AB交BC于P,連接PG,
∵AG⊥AD,∴∠DAF=∠EAC=90°,
在△DAF和△GAE中,
,
∴△DAF≌△GAE,
∴AD=AG,
∴∠BAP=90°=∠DAG,
∴∠BAD=∠PAG,
∵∠B=∠APB=45°,
∴AB=AP,
在△ABD和△APG中,
,
∴△ABD≌△APG,
∴BD=PG,∠B=∠APG=45°,
∴∠GPB=∠GPC=90°,
∵∠C=30°,
∴PG= GC,
∴BD= CG.
(3)
解:如圖2中,
作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M.則AP=PC,
在RT△AHC中,∵∠ACH=30°,
∴AC=2AH,
∴AH=AP,
在RT△AHD和RT△APG中,
,
∴△AHD≌△APG,
∴∠DAH=∠GAP,
∵GM⊥AC,PA=PC,
∴MA=MC,
∴∠MAC=∠MCA=∠MAH=30°,
∴∠DAM=∠GAM=45°,
∴∠DAH=∠GAP=15°,
∴∠BAD=∠BAH﹣∠DAH=30°,
作DK⊥AB于K,設(shè)BK=DK=a,則AK= a,AD=2a,
∴ = = ,
∵AG=CG=AD,
∴ =
【解析】(1)如圖1中,過(guò)點(diǎn)A作AH⊥BC于H,分別在RT△ABH,RT△AHC中求出BH、HC即可.(2)如圖1中,過(guò)點(diǎn)A作AP⊥AB交BC于P,連接PG,由△ABD≌△APG推出BD=PG,再利用30度角性質(zhì)即可解決問(wèn)題.(3)如圖2中,作AH⊥BC于H,AC的垂直平分線交AC于P,交BC于M.則AP=PC,作DK⊥AB于K,設(shè)BK=DK=a,則AK= a,AD=2a,只要證明∠BAD=30°即可解決問(wèn)題.本題考查相似三角形綜合題、全等三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)、線段垂直平分線性質(zhì)等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,學(xué)會(huì)設(shè)參數(shù)解決問(wèn)題,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過(guò)10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過(guò)10噸時(shí),超過(guò)的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià)
(2)設(shè)每月用水量為n噸,應(yīng)交水費(fèi)為m元,寫出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力.增強(qiáng)保護(hù)漢字的意識(shí),我區(qū)舉辦了“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 6 |
第3組 | 35≤x<40 | 14 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)= .
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“全民閱讀”號(hào)召,某校在七年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生,對(duì)概念機(jī)學(xué)生在2015年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計(jì)圖,其中閱讀了6本的人數(shù)占被調(diào)查人數(shù)的30%,根據(jù)圖中提供的信息,補(bǔ)全條形統(tǒng)計(jì)圖并估計(jì)該校七年級(jí)全體學(xué)生在2015年全年閱讀中外名著的總本數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【操作發(fā)現(xiàn)】在計(jì)算器上輸入一個(gè)正數(shù),不斷地按“ ”鍵求算術(shù)平方根,運(yùn)算結(jié)果越來(lái)越接近1或都等于1.
【提出問(wèn)題】輸入一個(gè)實(shí)數(shù),不斷地進(jìn)行“乘以常數(shù)k,再加上常數(shù)b”的運(yùn)算,有什么規(guī)律?
【分析問(wèn)題】我們可用框圖表示這種運(yùn)算過(guò)程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1 , 先在直線y=kx+b上確定點(diǎn)(x1 , y1),再在直線y=x上確定縱坐標(biāo)為y1的點(diǎn)(x2 , y1),然后再x軸上確定對(duì)應(yīng)的數(shù)x2 , …,以此類推.
【解決問(wèn)題】研究輸入實(shí)數(shù)x1時(shí),隨著運(yùn)算次數(shù)n的不斷增加,運(yùn)算結(jié)果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結(jié)論?可以輸入特殊的數(shù)如3,4,5進(jìn)行觀察研究;
(2)若k>1,又得到什么結(jié)論?請(qǐng)說(shuō)明理由;
(3)①若k=﹣ ,b=2,已在x軸上表示出x1(如圖2所示),請(qǐng)?jiān)趚軸上表示x2 , x3 , x4 , 并寫出研究結(jié)論;
②若輸入實(shí)數(shù)x1時(shí),運(yùn)算結(jié)果xn互不相等,且越來(lái)越接近常數(shù)m,直接寫出k的取值范圍及m的值(用含k,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為正方形ABCD中CD邊上一點(diǎn),∠DAE=30°,P為AE的中點(diǎn),過(guò)點(diǎn)P作直線分別與AD、BC相交于點(diǎn)M、N.若MN=AE,則∠AMN等于________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com