【題目】如圖,的對角線,相交于點,點為中點,若的周長為28,,則的周長為( )
A.12B.17C.19D.24
【答案】A
【解析】
由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得OB=OD,再由E是CD中點,即可得BE=BC,OE是△BCD的中位線,由三角形的中位線定理可得OE=AB, 再由ABCD的周長為28,BD=10, 即可求得AB+BC=14,BO=5,由此可得BE+OE=7, 再由△OBE的周長為=BE+OE+BO即可求得△OBE的周長.
∵四邊形ABCD是平行四邊形,
∴O是BD中點, OB=OD,
又∵E是CD中點,
∴BE=BC,OE是△BCD的中位線,
∴OE=AB,
∵ABCD的周長為28,BD=10,
∴AB+BC=14,
∴BE+OE=7,BO=5
∴△OBE的周長為=BE+OE+BO=7+5=12.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,BC=2AC,半徑為2的⊙C,分別交AC、BC于點D、E,得到.
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點均在格點上,在建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-6,1),點B的坐標(biāo)為(-3,1),點C的坐標(biāo)為(-3,3).
(1)將原來的Rt△ABC繞點O順時針旋轉(zhuǎn)90°得到Rt△A1B1C1,試在圖上畫出Rt△A1B1C1的圖形.
(2)求線段BC掃過的面積.
(3)求點A旋轉(zhuǎn)到A1路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家、食堂,圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中,小明離家的距離y(km)與時間x(min)之間的對應(yīng)關(guān)系,根據(jù)圖象,下列說法正確的是( )
A.小明吃早餐用了25min
B.食堂到圖書館的距離為0.6km
C.小明讀報用了30min
D.小明從圖書館回家的速度為0.8km/min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖,若DF⊥AC,垂足為F,證明:DE=DF
(2)如圖,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由。
(3)將∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎? 直接說出結(jié)論,不必說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形是正方形,是直線上任意一點,于點,于點.當(dāng)點G在BC邊上時(如圖1),易證DF-BE=EF.
(1)當(dāng)點在延長線上時,在圖2中補(bǔ)全圖形,寫出、、的數(shù)量關(guān)系,并證明;
(2)當(dāng)點在延長線上時,在圖3中補(bǔ)全圖形,寫出、、的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動課中,來到市游憩廣場,測量坐落在廣場中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實習(xí)報告如下.請你計算出銅像的高(結(jié)果精確到0.1m)
實習(xí)報告2003年9月25日
題目1 | 測量底部可以到達(dá)的銅像高 | |||
測 得 數(shù) 據(jù) | 測量項目 | 第一次 | 第二次 | 平均值 |
BD的長 | 12.3m | 11.7m | ||
測傾器CD的高 | 1.32m | 1.28m | ||
傾斜角 | α=30°56' | α=31°4' | ||
計 算 | ||||
結(jié)果 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:①AC=AD;②BD⊥AC;③四邊形ACED是菱形.其中正確的個數(shù)是________________(填寫正確的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com