動(dòng)手操作:在一張長(zhǎng)12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形.小穎同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH(見方案一),小明同學(xué)沿矩形的對(duì)角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(見方案二).

(1)你能說(shuō)出小穎、小明所折出的菱形的理由嗎?
(2)請(qǐng)你通過(guò)計(jì)算,比較小穎和小明同學(xué)的折法中,哪種菱形面積較大?
(1)理由見解析;(2)小明同學(xué)所折的菱形面積較大.

試題分析:(1)要證所折圖形是菱形,只需證四邊相等即可.(2)按照?qǐng)D形用面積公式計(jì)算S1=30和S2=35.21,可知方案二小明同學(xué)所折的菱形面積較大.
試題解析:(1)小穎的理由:依次連接矩形各邊的中點(diǎn)所得到的四邊形是菱形.
小明的理由:∵ABCD是矩形,
∴AD∥BC. ∴∠DAC=∠ACB.
又∵∠CAE=∠CAD,∠ACF=∠ACB,
∴∠CAE=∠CAD=∠ACF=∠ACB. ∴AE="EC=CF=FA." ∴四邊形AECF是菱形.
(2)方案一:.
方案二:設(shè)BE=x,則
.
由AECF是菱形,得AE2=CE2,∴,解得.
.

∴方案二小明同學(xué)所折的菱形面積較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABCD是矩形紙片,翻折∠B、∠D,使BC、AD恰好落在AC上.設(shè)F、H分別是B、D落在AC上的點(diǎn),E、G分別是折痕CE與AB、AG與CD的交點(diǎn).

(1)試說(shuō)明四邊形AECG是平行四邊形;
(2)若矩形的一邊AB的長(zhǎng)為3cm,當(dāng)BC的長(zhǎng)為多少時(shí),四邊形AECG是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)如圖,在長(zhǎng)方形ABCD中,將△ABC沿AC對(duì)折至△AEC位置,CE與AD交于點(diǎn)F.

(1)試說(shuō)明:AF=FC;
(2)如果AB=3,BC=4,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC=8,BD=6,過(guò)點(diǎn)O作OH⊥AB,垂足為H,則點(diǎn)O到邊AB的距離OH=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角形板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是(       ).
A.16B.12C.8D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線l過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是1和3,則正方形的邊長(zhǎng)是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長(zhǎng)是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長(zhǎng)為
A.B.C.4D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,正確的是【   】
A.平行四邊形的對(duì)角線相等B.矩形的對(duì)角線互相垂直
C.菱形的對(duì)角線互相垂直且平分D.梯形的對(duì)角線相等

查看答案和解析>>

同步練習(xí)冊(cè)答案