【題目】如圖所示,以BC為直徑的⊙O中,點(diǎn)A、E為圓周上兩點(diǎn),過點(diǎn)A作AD⊥BC,垂足為D,作AF⊥CE的延長線于點(diǎn)F,垂足為F,連接AC、AO,已知BD=EF,BC=4.
(1)求證:∠ACB=∠ACF;
(2)當(dāng)∠AEF= °時(shí),四邊形AOCE是菱形;
(3)當(dāng)AC= 時(shí),四邊形AOCE是正方形.
【答案】(1)見解析;(2)60;(3).
【解析】
(1)證明△ABD≌△AEF,可得AB=AE,則結(jié)論得證;
(2)根據(jù)菱形的判定方法,當(dāng)OC=CE=AE=OA時(shí),四邊形OAEC為菱形,則可判斷△OCE為等邊三角形,所以∠OCE=60°,可得∠AEF=60°;
(3)利用正方形的判定方法,當(dāng)∠AOC=90°時(shí),四邊形AOCE為正方形,則根據(jù)正方形的性質(zhì)計(jì)算出此時(shí)AC的長.
解:(1)證明:∵∠ABC+∠AEC=∠AEC+∠AEF=180°,
∴∠ABC=∠AEF,
在△ABD和△AEF中,,
∴△ABD≌△AEF(ASA)
∴AB=AE,
∴∠ACB=∠ACF;
(2)60,
如圖所示,連接OE,
∵四邊形AOCE是菱形,
∴OA=OC=CE=AE,
∵OC=CE=OE,
∴△ECO是等邊三角形,
∴∠OCE=60°,
∴AE∥BC,
∴∠AEF=∠OCE=60°.
故答案為:60;
(3)∵BC=4,
∴OC==2,
∵四邊形AOCE是正方形,
∴∠AOC=90°,
∴.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動到點(diǎn)B,圖2是點(diǎn)F運(yùn)動時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,Rt△ABC中,∠ACB=90°,AC=5,BC=12,點(diǎn)D在邊AB上,以AD為直徑的⊙O,與邊BC有公共點(diǎn)E,則AD的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在信息快速發(fā)展的社會,“信息消費(fèi)”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個(gè)社區(qū)隨機(jī)抽取部分家庭,調(diào)查每月用于信息消費(fèi)的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計(jì)表和統(tǒng)計(jì)圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.
月信息消費(fèi)額分組統(tǒng)計(jì)表
組別 | 消費(fèi)額(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
請結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:
(1)這次接受調(diào)查的有 戶;
(2)在扇形統(tǒng)計(jì)圖中,“E”所對應(yīng)的圓心角的度數(shù)是 ;
(3)請你補(bǔ)全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請估計(jì)月信息消費(fèi)額不少于200元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABOC,其一邊OB在x軸上,將菱形ABOC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)75°至FBDE的位置,若BO=2,∠A=120°,則點(diǎn)E的坐標(biāo)為( )
A. ()B. ()C. ()D. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=4,E,F分別是CD,BC上的一點(diǎn),且∠EAF=45°,EC=1,將△ADE繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點(diǎn)B作BM∥AG,交AF于點(diǎn)M,則以下結(jié)論:①DE+BF=EF②BF=; ③AF=;④中正確的是( 。
A. ①③④B. ②③④C. ①②③D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),D為BC延長線一點(diǎn),且BC=CD,CE⊥AD于點(diǎn)E.
(1)求證:直線EC為⊙O的切線;
(2)設(shè)BE與⊙O交于點(diǎn)F,AF的延長線與EC交于點(diǎn)P,已知∠PCF=∠CBF,PC=5,PF=3.求:cos∠PEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價(jià)多少元?(用列方程的方法解答)
(2)該車行計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A,B兩種型號車的進(jìn)貨和銷售價(jià)格如下表:
A型車 | B型車 | |
進(jìn)貨價(jià)格(元) | 1100 | 1400 |
銷售價(jià)格(元) | 今年的銷售價(jià)格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,其中AB為⊙O的直徑,過點(diǎn)A作⊙O的切線PA.
(1)求證:∠PAC=∠ABC;
(2)若∠PAC=30°,AC=3,求劣弧AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com