如圖,已知直線y=2x+2交y軸于點(diǎn)A,交x軸于點(diǎn)B,直線l:y=-3x+9
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時(shí),x的取值范圍;
(2)若點(diǎn)E在(1)中的拋物線上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過(guò)E作直線EF⊥x軸,垂足為G,交直線l于F.在拋物線上是否存在點(diǎn)H,使直線l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
1
2
?若存在,求點(diǎn)H的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)∵直線AB的解析式為y=2x+2,
∴點(diǎn)A、B的坐標(biāo)分別為A(0,2)、B(-1,0);
又直線l的解析式為y=-3x+9,∴點(diǎn)C的坐標(biāo)為(3,0).
由上,可設(shè)經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式為y=a(x+1)(x-3),將點(diǎn)A的坐標(biāo)代入,得:a=-
2
3
,
∴拋物線的解析式為y=-
2
3
x2+
4
3
x+2,
∴拋物線的對(duì)稱軸為x=1;
由于拋物線的開(kāi)口向下,所以函數(shù)值隨x的增大而增大時(shí),x的取值范圍是x≤1.

(2)過(guò)A作AEBC,交拋物線于點(diǎn)E;顯然,點(diǎn)A、E關(guān)于直線x=1對(duì)稱,
∴點(diǎn)E的坐標(biāo)為E(2,2);
故梯形ABCE的面積為 S=
1
2
(2+4)×2=6.

(3)假設(shè)存在符合條件的點(diǎn)H,作直線FH交x軸于M;
由題意知,S△CFM=3,設(shè)F(m,n),易知m=2;
將F(2,n)的坐標(biāo)代入y=-3x+9中,可求出n=3,則FG=3;
∴S△CFM=
1
2
FG•CM=3,∴CM=2.
由C(3,0)知,M1(1,0)、M2(5,0),
設(shè)FM的解析式為y=kx+b:
由M1(1,0)、F(2,3)得,F(xiàn)M1解析式為y=3x-3,則FM1與拋物線的交點(diǎn)H滿足:
y=3x-3
y=-
2
3
x2+
4
3
x+2

整理得,2x2+5x-15=0,
∴x=
-5±
145
4
,
由M2(5,0)、F(2,3)得,F(xiàn)M2解析式為y=-x+5,則FM2與拋物線的交點(diǎn)H滿足:
y=-x+5
y=-
2
3
x2+
4
3
x+2
,整理得,2x2-7x+9=0,
∵△<0,∴不符合題意,舍去;
即:H點(diǎn)的橫坐標(biāo)為
-5±
145
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=-x2+(2m+2)x-(m2+4m-3)
(1)拋物線與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)當(dāng)m為不小于零的整數(shù),且拋物線與x軸的兩個(gè)交點(diǎn)是整數(shù)點(diǎn)時(shí),求此拋物線的解析式;
(3)若設(shè)(2)中的拋物線的頂點(diǎn)為A,與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為B,M為y軸上一點(diǎn),且MA=MB,求M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0)、B(x2,0)(x1<x2),頂點(diǎn)M的縱坐標(biāo)為-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的兩個(gè)根,且x21+x22=10.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P,使三角形PAB的面積等于四邊形ACMB的面積的2倍?若存在,求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為Α(1,0),B(3,0),
(1)求此拋物線的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為C,試求四邊形ΑBCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

豎直向上發(fā)射物體的高度h(m)滿足關(guān)系式h=-5t2+v0•t,其中t(s)是物體運(yùn)動(dòng)的時(shí)間,v0(m/s)是物體被發(fā)射時(shí)的速度.某公園計(jì)劃設(shè)計(jì)園內(nèi)噴泉,噴水的最大高度要求達(dá)到15m,那么噴水的速度應(yīng)該達(dá)到多少?(結(jié)果精確到0.01m/s)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于三個(gè)數(shù)a,b,c,用max{a,b,c}表示這三個(gè)數(shù)中最大的數(shù).例如:max{1,2,3}=3.則:
(1)max{sin30°,(
2
-1)0
,tan30°}=______;
(2)如果max{5,3x+2,3-2x}=5,則x的取值范圍是______;
(3)max{x2+2,-x+4,x}的最小值為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某企業(yè)為打入國(guó)際市場(chǎng),決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)
項(xiàng)目
類別
年固定
成本
每件產(chǎn)品
成本
每件產(chǎn)品
銷售價(jià)
每年最多可
生產(chǎn)的件數(shù)
A產(chǎn)品20m10200
B產(chǎn)品40818120
其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)6≤m≤8.另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷售出去.
(1)寫出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其自變量取值范圍;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

蘋果熟了,從樹(shù)上落下所經(jīng)過(guò)的路程s與下落的時(shí)間t滿足s=
1
2
gt2(g是不為0的常數(shù)),則s與t的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,B是長(zhǎng)度為1的線段AE上任意一點(diǎn),在AE的同一側(cè)分別作正方形ABCD和長(zhǎng)方形BEFG,且EF=2BE.

(1)點(diǎn)B在何處時(shí),正方形ABCD的面積與長(zhǎng)方形BEFG的面積和最小,最小值為多少?
(2)若點(diǎn)C與點(diǎn)G重合,M為AB中點(diǎn),N為EF中點(diǎn),MN與BC交于點(diǎn)H(如圖2所示),將△OMA沿直線DM,△MNE沿直線MN分別向矩形AEFD內(nèi)折疊,求四邊形DMNF未被兩個(gè)折疊三角形覆蓋的圖形面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案