【題目】如圖,是根據(jù)九年級某班50名同學一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關于該班50名同學一周鍛煉時間的說法錯誤的是( )
A. 眾數(shù)是7 B. 中位數(shù)是6.5
C. 平均數(shù)是 6.5 D. 平均每周鍛煉超過6小時的人占總數(shù)的一半
【答案】C
【解析】分析:根據(jù)中位數(shù)、眾數(shù)和平均數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù)和平均數(shù),由圖可知鍛煉時間超過6小時的有20+5=25人.即可判斷四個選項的正確與否.
詳解:A.因為7出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,所以眾數(shù)為:7,故此選項正確,不合題意;
B.∵一共有50個數(shù)據(jù),
∴按從小到大排列,第25,26個數(shù)據(jù)的平均值是中位數(shù),
∴中位數(shù)是6.5,故此選項正確,不合題意;
C.平均數(shù)為:(5×7+18×6+20×7+5×8)÷50=6.46(分),故本選項錯誤,符合題意;
D.由圖可知鍛煉時間超過6小時的有20+5=25人,故平均每周鍛煉超過6小時的人占總數(shù)的一半,故此選項正確,不合題意;
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A、B,與y軸交于點C,且OA=1,OB=3,頂點為D,對稱軸交x軸于點Q.
(1)求拋物線對應的二次函數(shù)的表達式;
(2)點P是拋物線的對稱軸上一點,以點P為圓心的圓經過A、B兩點,且與直線CD相切,求點P的坐標;
(3)在拋物線的對稱軸上是否存在一點M,使得△DCM∽△BQC?如果存在,求出點M的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠BAD=60°,AC=AD,AC平分∠BAD,M,N分別為AC,CD的中點,BM的延長線交AD于點E,連接MN,BN.對于下列四個結論:①MN∥AD;② BM=MN;③△BAE≌△ACB;④AD=BN,其中正確結論的序號是( )
A. ①②③④ B. ①②③ C. ①②④ D. ①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為直線,下列結論: ; ; ; 若點、點、點在該函數(shù)圖象上,則; 若方程的兩根為和,且,則其中正確的結論是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩摞規(guī)格完全相同的課本整齊疊放在講臺上請根據(jù)圖中所給出的數(shù)據(jù)信息,回答下列問題:
(1)每本課本的厚度為______cm;
(2)若有一摞上述規(guī)格的課本x本,整齊疊放在講臺上,請用含x的代數(shù)式表示出這一摞數(shù)學課本的頂部距離地面的高度為______cm;
(3)當x=48時,若從中取走10本,求余下的課本的頂部距離地面的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在綜合與實踐課上,老師組織同學們以“矩形紙片的折疊”為主題開展數(shù)學活動.
(1)奮進小組用圖1中的矩形紙片ABCD,按照如圖2所示的方式,將矩形紙片沿對角線AC折疊,使點B落在點處,則與重合部分的三角形的類型是________.
(2)勤學小組將圖2中的紙片展平,再次折疊,如圖3,使點A與點C重合,折痕為EF,然后展平,則以點A、F、C、E為頂點的四邊形是什么特殊四邊形?請說明理由.
(3)創(chuàng)新小組用圖4中的矩形紙片ABCD進行操作,其中,,先沿對角線BD對折,點C落在點的位置,交AD于點G,再按照如圖5所示的方式折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M.則EM的長為________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017山東省日照市)如圖,在平面直角坐標系中,經過點A的雙曲線(x>0)同時經過點B,且點A在點B的左側,點A的橫坐標為,∠AOB=∠OBA=45°,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點都在數(shù)軸上,為原點.
(1)點表示的數(shù)是 ;
(2)若點以每秒3個單位長度的速度沿數(shù)軸運動,則1秒后點表示的數(shù)是 ;
(3)若點都以每秒3個單位長度的速度沿數(shù)軸向右運動,而點不動,秒后有一個點是一條線段的中點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一張正方形桌子可坐4人,按圖1—圖3的方式將桌子拼在一起并安排人員就坐.
(1)兩張桌子拼在一起可做 人,三張桌子拼在一起可坐 人,張桌子拼在一起可坐 人
(2)一家酒樓有60張這樣的桌子,按照圖1—圖3方式每4張拼成一個大桌子,則60張桌子可拼成15張大桌子,共可坐 人
(3)在問題(2)中,若每4張桌子拼成一個大的正方形桌子,則可坐 人
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com