【題目】小龍?jiān)趯W(xué)校組織的社會調(diào)查活動(dòng)中負(fù)貴了解他所居住的小區(qū)450戶居民的家庭收入情況從中隨機(jī)調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻分布直方圖。
分組 | 頻數(shù) | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1400≤<1600 | ||
1600≤<1800 | 2 | |
合計(jì) | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題
(1)補(bǔ)全頻數(shù)分布表
(2)補(bǔ)全頻數(shù)分布直方圖
(3)請你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶
【答案】(1)18,1200≤<1400,3,7.5%,5%;(2)見解析;(3) 338
【解析】
(1)根據(jù)1000≤<1200所占的百分比,計(jì)算1000≤<1200頻數(shù)即可;再根據(jù)總數(shù)即可計(jì)算出1400≤<1600的頻數(shù),進(jìn)而計(jì)算百分比.
(2)根據(jù)頻數(shù)表補(bǔ)充分布直方圖即可.
(3)首先計(jì)算出大于1000不足1600元所占的百分比,再根據(jù)總數(shù)計(jì)算即可.
解:
(1)4,
根據(jù)直方圖可得1200≤<1400,
,
,
(2)根據(jù)頻數(shù)表補(bǔ)充如下:
(3)450×75%=338
估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有338戶
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八屆五中全會出臺了全面實(shí)施一對夫婦可生育兩個(gè)孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進(jìn)人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個(gè)孩子(生男生女機(jī)會均等,且與順序有關(guān)).
(1)該家庭生育兩胎,假設(shè)每胎都生育一個(gè)小孩,求這兩個(gè)小孩恰好是1男1女的概率;
(2)該家庭生育兩胎,假如第一胎生育一個(gè)小孩,其第二胎生育一對雙胞胎,請你用畫樹狀圖或列表的方法,求這三個(gè)小孩中至少有一個(gè)女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面 與通道 平行),通道水平寬度 為8米, ,通道斜面 的長為6米,通道斜面 的坡度 .
(1)求通道斜面 的長為米;
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面 的坡度變緩,修改后的通道斜面 的坡角為30°,求此時(shí) 的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
如圖,AB和CD相交于點(diǎn)O,EF∥AB,∠C=∠COA,∠D=∠BOD.求證:∠A=∠F.
證明:∵∠C=∠COA,∠D=∠BOD,
又∵∠COA=∠BOD( ),
∴∠C= ( ).
∴AC∥BD( ).
∴∠A= ( ).
∵EF∥AB,
∴∠F= ( ).
∴∠A=∠F( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),直接寫出∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點(diǎn)O,BC與AE交于點(diǎn)P.求證:∠AOB=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .
其中正確的結(jié)論有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角中,,若想找一點(diǎn)P,使得與互補(bǔ),甲、乙、丙三人作法分別如下:
甲:以B為圓心,AB長為半徑畫弧交AC于P點(diǎn),則P即為所求;
乙:分別以B,C為圓心,AB,AC長為半徑畫弧交于P點(diǎn),則P即為所求;
丙:作BC的垂直平分線和的平分線,兩線交于P點(diǎn),則P即為所求.
對于甲、乙、丙三人的作法,下列敘述正確的是
A. 三人皆正確B. 甲、丙正確,乙錯(cuò)誤
C. 甲正確,乙、丙錯(cuò)誤D. 甲錯(cuò)誤,乙、丙正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com