【題目】如圖,已知ABC中,∠C=90°,AC=BC=,將ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°的位置,連接,則的長為( ).

A. B. C. D. 1

【答案】A

【解析】分析:連接BB′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AB′,判斷出△ABB是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得AB=BB′,然后利用邊邊邊證明△ABC和△BBC全等根據(jù)全等三角形對應(yīng)角相等可得∠ABC′=BBC′,延長BCABD,根據(jù)等邊三角形的性質(zhì)可得BDAB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、CD,然后根據(jù)BC′=BDCD計(jì)算即可得解.

詳解如圖,連接BB′.

∵△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△ABC′,AB=AB′,BAB′=60°,∴△ABB是等邊三角形,AB=BB′.

ABC和△BBC中,∵AB=BB';AC'=B'C',BC'=BC',∴△ABC≌△BBC′(SSS),∴∠ABC′=BBC′,延長BCABD,BDAB′.

∵∠C=90°,AC=BC=,AB==2,

BD=2×=,CD=×2=1,BC′=BDCD=1

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測得的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對岸正對的一棵樹A;②沿河岸直走20m有一棵樹C,繼續(xù)前行20m到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5.

1)河的寬度是 .

2)請你說明他們做法的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分A(-2,-2),B(-4,-1),C(-4,-4).

(1)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A1B1C1;

(2)作出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A'.若把點(diǎn)A'向右平移a個(gè)單位長度后落在

△A1B1C1的內(nèi)部(不包括頂點(diǎn)和邊界),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中

①一個(gè)角的兩邊分別垂直于另一角的兩邊,則這兩個(gè)角相等或互補(bǔ)

②若點(diǎn)Ay=2x﹣3上,且點(diǎn)A到兩坐標(biāo)軸的距離相等,則點(diǎn)A在第一象限

③半徑為5的圓中,弦AB=8,則圓周上到直線AB的距離為2的共有四個(gè)

④如果ADABC的高,∠CAD=B,那么ABC是直角三角形

正確命題有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為打造智慧課堂,準(zhǔn)備集體購買一批平板電腦,原計(jì)劃訂購60臺(tái),每臺(tái)1000元,商家表示,如果多購,可以優(yōu)惠,結(jié)果校長實(shí)際訂購了72臺(tái),每臺(tái)減價(jià)30元,但商家獲得同樣多的利潤.

1)求每臺(tái)平板電腦的成本是多少元?

2)求商家的利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義符號(hào)max﹛a , b﹜的含義為:當(dāng)a≥b時(shí), max﹛a , b﹜=a;當(dāng)a<b時(shí),max﹛a , b﹜=b. max﹛2 , -3﹜=2 , max﹛-4 , -2﹜=-2,則max﹛-x2+2x+3 , |x|﹜的最小值是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),公路上有ABC三個(gè)車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖(2)所示.

1)當(dāng)汽車在A、B兩站之間勻速行駛時(shí),求yx之間的函數(shù)關(guān)系式及自變量的取值范圍;

2)求出v2的值;

3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)E作EG//BC交AC于點(diǎn)G.(1)求證: AE=AF; (2)若AG=4,AC=7,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù), )的圖象與直線相交于點(diǎn)C,過直線上點(diǎn)A1,3)作ABx軸于點(diǎn)B,交反比例函數(shù)圖象于點(diǎn)D,且AB=3BD.

1)求k的值;

2)求點(diǎn)C的坐標(biāo);

3)在y軸上確實(shí)一點(diǎn)M,使點(diǎn)MC、D兩點(diǎn)距離之和d=MC+MD,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案