【題目】如圖,在△ABC中,AB=AC=10,BC=12,AD=8,AD是BC邊上的高.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( ).
A.6B.8C.9.6D.12
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點,交直線x=4于B點.
(1)拋物線的對稱軸為x=_____(用含m的代數(shù)式表示);
(2)若AB∥x軸,求拋物線的表達式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點),若對于圖象G上任意一點P(xp,yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離(取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點C與點A重合,折痕EF分別與AB、DC交于點E和點F.
(1)試寫出圖中若干相等的線段和銳角(分別寫兩對);
(2)證明:△ADF≌△AB′E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形AOCB的頂點A(m,n)和C(p,q)在坐標(biāo)軸上,已知和都是方程x+2y=4的整數(shù)解,點B在第一象限內(nèi).
(1)求點B的坐標(biāo);
(2)若點P從點A出發(fā)沿y軸負半軸方向以1個單位每秒的速度運動,同時點Q從點C出發(fā),沿x軸負半軸方向以2個單位每秒的速度運動,問運動到多少秒時,四邊形BPOQ面積為長方形ABCO面積的一半;
(3)如圖2,將線段AC沿x軸正方向平移得到線段BD,點E(a,b)為線段BD上任意一點,試問a+2b的值是否變化?若變化,求其范圍;若不變化,求其值.(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=56°,點D為AB中點,且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合則∠OEC為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當(dāng)經(jīng)過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿△ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當(dāng)按定價售出200本時,出現(xiàn)滯銷,便以定價的4折售完剩余的書.
(1)第一次購書的進價是多少元?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com