【題目】已知:四邊形ABCD是一張矩形紙片,AB3cm,BC5cm

1)在矩形ABCD的邊AD上找一點E,使CE平分∠BED,請利用刻度尺或圓規(guī)作出點E,寫出作法,并給出證明;

2)把矩形紙片沿某直線剪一刀分成兩部分后,再用這兩部分拼成一個菱形,請畫出剪拼的示意圖,并求出菱形的較長對角線的長度.

【答案】1)見解析;(2)見解析,

【解析】

1)如圖1,利用“倒推法”,要作CE平分∠BED,就要∠BEC=∠DEC,而∠BCE=∠DEC,那么∠BCE=∠BEC,即BCBE,只要作出BCBE即可;

2)如圖2所示,沿BE裁剪,將ABE平移至DCF位置,由(1)知:四邊形BCFE四邊都相等,則四邊形BCFE即為所求;在Rt△ABE中可求得AE的長,Rt△ABF中就可以求得AF的長,利用勾股定理可求得答案.

解:(1)如圖1所示,點E即為所求;

由作圖知BCBE

∴∠BCE=∠BEC,

∵四邊形ABCD是矩形,

ADBC,

∴∠BCE=∠DEC

∴∠BEC=∠DEC,

EC平分∠BED;

2)如圖2所示,沿BE裁剪,將ABE平移至DCF位置,則四邊形BCFE即為所求,

由(1)知:BCBE5,

AB3,∠A90°,

DFAE4,

AFAD+DF5+49,

BF3cm).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(實驗操作)如圖①,在中,,現(xiàn)將邊沿的平分線翻折,點落在邊的點處;再將線段沿翻折到線段,連接.

(探究發(fā)現(xiàn))若點,,三點共線,則的大小是______的大小是________,此時三條線段,,之間的數(shù)量關系是________.

(應用拓展)如圖②,將圖①中滿足(實驗操作)與(探究發(fā)現(xiàn))的的邊延長至,使得,連接,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD的一組對邊AD、BC的延長線相交于點E.另一組對邊AB、DC的延長線相交于點F,若cosABC=cosADC=,CD=5,CF=ED=n,則AD的長為_____(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內)變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.

(1)求Rt之間的關系式;

(2)家用電滅蚊器在使用過程中,溫度在什么范圍內時,發(fā)熱材料的電阻不超過4kΩ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同一個圓的內接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字”、“”、“”、“的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個球,球上的漢字剛好是的概率為__________.

(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,若點從點出發(fā),以每秒的速度沿折線運動,設運動時間為秒.

備用圖

1___________;

2)若點恰好在的角平分線上,求此時的值:

3)在運動過程中,當為何值時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在RtABC中,∠A=90°,AB=AC=+2,D是邊AC上的動點,BD的垂直平分線交BC于點E,連接DE,若CDE為直角三角形,則BE的長為_____

查看答案和解析>>

同步練習冊答案