在直角坐標系xOy中,二次函數(shù)y=數(shù)學公式的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A在點B的左邊,若
∠ACB=90°,數(shù)學公式
(1)求點C的坐標及這個二次函數(shù)的解析式.
(2)試設計兩種方案:作一條與y軸不重合、與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,并且面積是△AOC面積的四分之一.求所截得的三角形三個頂點的坐標(說明:不要求證明).

解:(1)在y=中,令x=0,則y=2-m,
則C的坐標是(0,2-m),則OC=m-2.
∵∠ACB=90°,
∴OC2=OA•OB,
設A、B的橫坐標分別是x1,x2,則OA=-x1,OB=x2
則x1•x2==4-2m,
∴OC2=OA•OB=2m-4.
則(m-2)2=2m-4,解得:m=2(舍去)或4.
故m=4.則OC=4-2=2,
則C的坐標是(0,-2),
,即===1,
∴AO=2CO=4,
則A的坐標是:(-4,0),
把(-4,0)以及m=4代入方程即可得到:8-3n-2=0,解得:n=2,
則二次函數(shù)的解析式是:y=x2+x-2;
(2)直角△OAC中,OA=OC=2,則當直線經(jīng)過OA的中點,平行于OC時,使截得的三角形與△ABC相似,并且面積是△AOC面積的四分之一,則三個頂點的坐標是(-2,0)(-1,0),(-1,-1);
直角△OAC中,OA=OC=2,則當直線經(jīng)過OA的中點,平行于OA時,使截得的三角形與△ABC相似,并且面積是△AOC面積的四分之一,則三個頂點的坐標是(0,-2),(0,-1),(-1,-1).
分析:(1)根據(jù)∠ACB=90°,以及OC⊥AB,則可以得到OC2=OA•OB,根據(jù)根與系數(shù)的關系即可得到關于m的方程,求得m的值,然后依據(jù),利用OC2=OA•OB,即可求得OA的長度,從而求得A的坐標,代入解析式即可求得n的值,從而求得函數(shù)的解析式;
(2)經(jīng)過OA或OC的中點,作△AOC的中位線,截得的三角形與△AOC以及△ABC一定相似,且面積是△AOC面積的四分之一,即可寫出頂點的坐標.(答案不唯一)
點評:本題考查了根與系數(shù)的關系,以及相似三角形的判定與性質,正確求得m的值是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

首先,我們看兩個問題的解答:
問題1:已知x>0,求x+
3
x
的最小值.
問題2:已知t>2,求
t2-5t+9
t-2
的最小值.
問題1解答:對于x>0,我們有:x+
3
x
=(
x
-
3
x
)2+2
3
2
3
.當
x
=
3
x
,即x=
3
時,上述不等式取等號,所以x+
3
x
的最小值2
3

問題2解答:令x=t-2,則t=x+2,于是
t2-5t+9
t-2
=
(x+2)2-5(x+2)+9
x
=
x2-x+3
x
=x+
3
x
-1

由問題1的解答知,x+
3
x
的最小值2
3
,所以
t2-5t+9
t-2
的最小值是2
3
-1

弄清上述問題及解答方法之后,解答下述問題:
在直角坐標系xOy中,一次函數(shù)y=kx+b(k>0,b>0)的圖象與x軸、y軸分別交于A、B兩點,且使得△OAB的面積值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標為(6,6),拋物線y=ax2+bx+c經(jīng)過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當點E到達終點B時,點E,F(xiàn)隨之停止運動,設運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關系式,并求出S的最大值;
②當S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在直角坐標系xoy中,函數(shù)y=4x的圖象與反比例函數(shù)y=
kx
(k>0)的圖象有兩個公共點A、B(如圖),其中點A的縱坐標為4過點A作x軸的垂線,再過點B作y軸的垂線,兩垂線相交于點C.
(1)求點C的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京二模)已知:如圖,在直角坐標系xOy中,點A(8,0)、B(0,6),點C在x軸的負半軸上,AB=AC.動點M在x軸上從點C向點A移動,動點N在線段AB上從點A向點B移動,點M、N同時出發(fā),且移動的速度都為每秒1個單位,移動時間為t秒(0<t<10).
(1)設△AMN的面積為y,求y關于t的函數(shù)關系解析式;
(2)求四邊形MNBC的面積最小是多少?
(3)求時間t為何值時,△AMN是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山三模)如圖,在直角坐標系xOy中,A、B是x軸上的兩點,以AB為直徑的圓交y軸于C,設過A、B、C三點的拋物線的解析式為y=x2-mx+n.方程x2-mx+n=0的兩根倒數(shù)和為-4.
(1)求n的值;
(2)求此拋物線的解析式;
(3)設平行于x軸的直線交此拋物線于E、F兩點,問是否存在此線段EF為直徑的圓恰好與x軸相切?若存在,求出此圓的半徑;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案