【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(10),將線段OP0按照逆時(shí)針?lè)较蛐D(zhuǎn)45°,再將其長(zhǎng)度伸長(zhǎng)為OP02倍,得到線段OP1;又將線段OP1按照逆時(shí)針?lè)较蛐D(zhuǎn)45°,長(zhǎng)度伸長(zhǎng)為OP12倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPnn為正整數(shù)),則點(diǎn)P8的坐標(biāo)為_____

【答案】256,0).

【解析】

先根據(jù)伸長(zhǎng)的變化規(guī)律求出OP8的長(zhǎng)度,再根據(jù)每8次變化為一個(gè)循環(huán)組,然后確定出所在的位置,再根據(jù)等腰直角三角形的直角邊等于斜邊的倍解答即可.

解:由題意可得,OP01OP12×12,

OP22×222

OP32×2223,

OP42×2324,

OP82×2728256,

∵每一次都旋轉(zhuǎn)45°,360°÷45°8

∴每8次變化為一個(gè)循環(huán)組,

P8x的正半軸上,P8256,0),

故答案為(256,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1=1000毫克,那么0.000037毫克可用科學(xué)記數(shù)法表示為

A. 3.7×10﹣5 B. 3.7×10﹣6 C. 37×10﹣7 D. 3.7×10﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點(diǎn)A﹣20)和點(diǎn)B,交y軸于點(diǎn)C0,2).

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)M在拋物線上,且SAOM=2SBOC,求點(diǎn)M的坐標(biāo);

3)如圖2,設(shè)點(diǎn)N是線段AC上的一動(dòng)點(diǎn),作DNx軸,交拋物線于點(diǎn)D,求線段DN長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,直線y=﹣x+6x軸、y軸分別交于B、A兩點(diǎn),點(diǎn)P從點(diǎn)A開(kāi)沿y軸以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A開(kāi)始沿AB向點(diǎn)B運(yùn)動(dòng)(當(dāng)P,Q兩點(diǎn)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng))如果點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)如果點(diǎn)Q的速度為每秒個(gè)單位長(zhǎng)度,那么當(dāng)t5時(shí),求證:△APQ∽△ABO;

2)如果點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng)度,那么多少秒時(shí),△APQ的面積為16?

3)若點(diǎn)H為平面內(nèi)任意一點(diǎn),當(dāng)t4時(shí),以點(diǎn)A,P,H,Q四點(diǎn)為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+m1x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,若A點(diǎn)坐標(biāo)為(x1,0),B點(diǎn)坐標(biāo)為(x2,0)x1≠x2).

1)求m的取值范圍;

2)如圖1,若x12+x2217,求拋物線的解析式;

3)在(2)的條件下,請(qǐng)解答下列兩個(gè)問(wèn)題:

①如圖1,請(qǐng)連接AC,求證:△ACB為直角三角形.

②如圖2,若D(1,n)在拋物線上,過(guò)點(diǎn)A的直線y=﹣x1交(2)中的拋物線于點(diǎn)E,那么在x軸上點(diǎn)B的左側(cè)是否存在點(diǎn)P,使以PB、D為頂點(diǎn)的三角形與△ABE相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC60°,DAB上一點(diǎn),ACBDPCD中點(diǎn).求證:APBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料:有這樣一個(gè)問(wèn)題:關(guān)于x的一元二次方程ax2+bx+c0a0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿足的條件.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過(guò)程:

①設(shè)一元二次方程ax2+bx+c0a0)對(duì)應(yīng)的二次函數(shù)為yax2+bx+ca0);

②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:

方程根的幾何意義:

1)參考小明的做法,把上述表格補(bǔ)充完整;

2)若一元二次方程mx2﹣(2m+3x4m0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于﹣1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點(diǎn).

)已知:如圖,若 AE 平分BADAED=90°,點(diǎn) F AD 上一點(diǎn),AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BAD,DE 平分ADCAED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=AB,GD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=∠C44°,點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.

1)求證:ABE≌△ACD;

2)若ABBE,求∠DAE的度數(shù);

3)若ACE的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案