【題目】如圖,直線y=﹣2x+8與兩坐標軸分別交于P、Q兩點,在線段PQ上有一點A,過A點分別作兩坐標軸的垂線,垂足分別為B、C.
(1)若矩形ABOC的面積為5,求A點坐標.
(2)若點A在線段PQ上移動,求矩形ABOC面積的最大值.
【答案】(1)A點的坐標是(,4﹣ )或(,4+);(2)矩形ABOC的最大值是8.
【解析】試題分析:(1)設(shè)A(x,﹣2x+8),根據(jù)矩形ABOC的面積為5得出方程x(﹣2x+8)=5,求出方程的解即可;
(2)設(shè)A(x,﹣2x+8),矩形ABOC面積是S,根據(jù)矩形面積公式得出S=x(﹣2x+8),求出函數(shù)的最值即可.
試題解析:解:(1)設(shè)A(x,﹣2x+8),∵矩形ABOC的面積為5,∴x(﹣2x+8)=5,解得:x1=,x2=,∴y1=,y2=,即A點的坐標是(, )或(, );
(2)設(shè)A(x,﹣2x+8),矩形ABOC面積是S,則S=x(﹣2x+8)=﹣2(x﹣2)2+8.∵a=﹣2<0,∴有最大值,當x=2時,S的最大值是8,即矩形ABOC的最大值是8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學(xué)進行的推理,請你將彬彬同學(xué)的推理過程補充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個長8 厘米,寬6厘米的長方形中,剪下一個最大的圓,這個圓的面積是( )平方厘米.
A.18.84B.28.26C.25.12D.50.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:(總利潤=單件利潤×銷售量)
商品 價格 | A | B |
進價(元/件) | 1200 | 1000 |
售價(元/件) | 1350 | 1200 |
(1)該商場第1次購進A、B兩種商品各多少件?
(2)商場第2次以原價購進A、B兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原價銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動獲得利潤等于54000元,則B種商品是打幾折銷售的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項式的乘法中,能用平方差公式計算的是( )
A. (-m +n)(m - n) B. (a +b)(b -a)
C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫男畔,或可以求出一些不規(guī)則圖形的面積.
(1)如圖1所示,將一張長方形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小長方形,且m>n.觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 .
(2)若圖1中每塊小長方形的面積為12cm2,四個正方形的面積和為50 cm2,試求圖中所有裁剪線(虛線部分)長之和.
(3)將圖2中邊長為a和b的正方形拼在一起,B,C,G三點在同一條直線上,連接BD和BF,若這兩個正方形的邊長滿足a+b=10,ab=16,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有A、B、C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A. 在AC、BC兩邊高線的交點處
B. 在AC、BC兩邊中線的交點處
C. 在AC、BC兩邊垂直平分線的交點處
D. 在∠A、∠B兩內(nèi)角平分線的交點處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種電視機原價每臺2600元,國慶期間以九五折出售,并且商家規(guī)定滿2000元返200元.若購買這種電視機實際需要多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com