求二次函數(shù)y=x2-2x-1的頂點坐標(biāo)及它與x軸的交點坐標(biāo).
【答案】分析:本題已知二次函數(shù)的一般式,求頂點,可以通過配方法把解析式寫成頂點式,求它與x軸的交點坐標(biāo),可以設(shè)y=0,求方程x2-2x-1=0的解.
解答:解:∵y=x2-2x-1
=x2-2x+1-2
=(x-1)2-2
∴二次函數(shù)的頂點坐標(biāo)是(1,-2)
設(shè)y=0,則x2-2x-1=0
∴(x-1)2-2=0
(x-1)2=2,x-1=±
∴x1=1+,x2=1-
二次函數(shù)與x軸的交點坐標(biāo)為(1+,0)(1-,0).
點評:本題考查求二次函數(shù)的頂點坐標(biāo)及x軸交點坐標(biāo)的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點M(1,-2)、N(-1,6).
(1)求二次函數(shù)y=x2+bx+c的關(guān)系式;
(2)把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點A、B的坐標(biāo)分別為(1,0),(4,0),BC=5.將△ABC沿x軸向右平移,當(dāng)點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=
1
2
x和y=-x+m,二次函數(shù)y=x2+px+q的圖象的頂點為M.
(1)若M恰好在直線y=
1
2
x與y=-x+m的交點處,試證明:無論m取何實數(shù)值,二次函數(shù)y=x2+px+q的圖象與直線y=-x+m總有兩個不同的交點.
(2)在(1)的條件下,若直線y=-x+m過點D(0,-3),求二次函數(shù)y=x2+px+q的表達(dá)式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數(shù)y=x2+px+q的圖象與y軸交于點C,與x軸的左交點為A,試在精英家教網(wǎng)直線y=
1
2
x上求異于M的點P,使點P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求下列二次函數(shù)的相關(guān)值.
(1)求二次函數(shù)y=-x2-4x+2的頂點和對稱軸;
(2)求二次函數(shù)y=x2-5x+1的圖象與x軸的交點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•達(dá)州)【問題背景】
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x(x
>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
【提出新問題】
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(小)值是多少?
【分析問題】
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗耍
【解決問題】
借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時,函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x(x
>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(小)值,以證明你的猜想.〔提示:當(dāng)x>0時,x=(
x
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為x,面積為s,則s與x的函數(shù)關(guān)系式為:s=-x2+
1
2
x
(x>0),利用函數(shù)的圖象或通過配方均可求得該函數(shù)的最大值.
提出新問題:
若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(小)值是多少?
分析問題:
若設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為:y=2(x+
1
x
)
(x>0),問題就轉(zhuǎn)化為研究該函數(shù)的最大(小)值了.
解決問題:
借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)y=2(x+
1
x
)
(x>0)的圖象:
x 1/4 1/3 1/2 1 2 3 4
y
17
2
20
3
5 4 5
20
3
17
2
(2)觀察猜想:觀察該函數(shù)的圖象,猜想當(dāng)x=
1
1
時,函數(shù)y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理論證:問題背景中提到,通過配方可求二次函數(shù)s=-x2+
1
2
x
(x>0)的最大值,請你嘗試通過配方求函數(shù)y=2(x+
1
x
)
(x>0)的最大(。┲担宰C明你的猜想.〔提示:當(dāng)x>0時,x=(
x
)2

查看答案和解析>>

同步練習(xí)冊答案