【題目】如圖,O是△ABC內(nèi)一點(diǎn),⊙O與BC相交于F、G兩點(diǎn),且與AB、AC分別相切于點(diǎn)D、E,DE∥BC.連接 DF、EG.
(1)求證:AB=AC.
(2)已知 AB=5,BC=6.求四邊形DFGE是矩形時(shí)⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)四邊形DFGE是矩形時(shí)⊙O的半徑為.
【解析】
(1)由切線長(zhǎng)定理可知AD=AE,易得∠ADE=∠AED,因?yàn)?/span>DE∥BC,由平行線的性質(zhì)得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;
(2)如圖,連接AO,交DE于點(diǎn)M,延長(zhǎng)AO交BC于點(diǎn)N,連接OE、DG,設(shè)⊙O半徑為r,由△AOD∽△ABN得,得到AD=r,再由△GBD∽△ABN得,列出方程即可解決問(wèn)題.
(1)證明:∵AD、AE是⊙O的切線,
∴AD=AE,
∴∠ADE=∠AED,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴∠B=∠C,
∴AB=AC;
(2)如圖,連接AO,交DE于點(diǎn)M,延長(zhǎng)AO交BC于點(diǎn)N,連接OE、DG,設(shè)⊙O半徑為r,
∵四邊形DFGE是矩形,
∴∠DFG=90°,
∴DG是⊙O直徑,
∵⊙O與AB、AC分別相切于點(diǎn)D、E,
∴OD⊥AB,OE⊥AC,
∵OD=OE.
∴AN平分∠BAC,∵AB=AC,
∴AN⊥BC,BN=BC=3,
在Rt△ABN中,AN=,
∵OD⊥AB,AN⊥BC,
∴∠ADO=∠ANB=90°,
∵∠OAD=∠BAN,
∴△AOD∽△ABN,
∴,即,
∴AD=r,
∴BD=AB﹣AD=5﹣r,
∵OD⊥AB,
∴∠GDB=∠ANB=90°,
∵∠B=∠B,
∴△GBD∽△ABN,
∴,即,
∴r=,
∴四邊形DFGE是矩形時(shí)⊙O的半徑為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)化簡(jiǎn);
(2)如圖,已知△ABC,按如下步驟作圖:
①分別以A,C為圓心,大于AC的長(zhǎng)為半徑畫(huà)弧,兩弧交于P, Q兩點(diǎn);
②作直線PQ,分別交AB,AC于點(diǎn)E,D;
③過(guò)C作CF∥AB交PQ于點(diǎn)F.
求證:△AED≌△CFD;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《基礎(chǔ)教育課程改革綱要》要求每位學(xué)生每學(xué)年都要參加社會(huì)實(shí)踐活動(dòng)。某學(xué)校組織了一次戶外攀巖活動(dòng),如圖,攀巖墻體近似看作垂直于地面,一學(xué)生攀到D點(diǎn)時(shí),距離地面B點(diǎn)3.6米,該學(xué)生繼續(xù)向上很快就攀到頂點(diǎn)E。在A處站立的帶隊(duì)老師拉著安全繩,分別在點(diǎn)D和點(diǎn)E測(cè)得點(diǎn)C的俯角是45°和60°,帶隊(duì)老師的手C點(diǎn)距離地面1.6米,請(qǐng)求出攀巖的頂點(diǎn)E距離地面的高度為多少米?(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到平行四邊形A′B′OC′.拋物線y=﹣x2+2x+3經(jīng)過(guò)點(diǎn)A、C、A′三點(diǎn).
(1)求A、A′、C三點(diǎn)的坐標(biāo);
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△C′OD的面積;
(3)點(diǎn)M是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并寫(xiě)出此時(shí)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC是⊙O的直徑,B為⊙O上一點(diǎn),D為的中點(diǎn),過(guò)D作EF∥BC交AB的延長(zhǎng)線于點(diǎn)E,交AC的延長(zhǎng)線于點(diǎn)F.
(Ⅰ)求證:EF為⊙O的切線;
(Ⅱ)若AB=2,∠BDC=2∠A,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任寧老師對(duì)全
班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:
(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是多少,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寧老師發(fā)現(xiàn)報(bào)名參加“植物識(shí)別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這組學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,那么恰好選1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率;
(3)若學(xué)校學(xué)生總?cè)藬?shù)為2000人,根據(jù)八年級(jí)(3)班的情況,估計(jì)全校報(bào)名軍事競(jìng)技的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有三張分別畫(huà)有正三角形、平行四邊形、菱形圖案的卡片,它們除圖案外完全相同,把卡片背面朝上洗勻,從中隨機(jī)抽取一張后放回,再背面朝上洗勻,從中隨機(jī)抽取一張,則兩次抽出的每一張卡片的圖案既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com