【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、E3,0)兩點(diǎn),與y軸交于點(diǎn)B0,3).

1)求拋物線的解析式;

2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;

3△AOB△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由.

【答案】1;(29;(3△AOB∽△DBE.理由見(jiàn)解析.

【解析】

1)易得c=3,故設(shè)拋物線解析式為y=ax2+bx+3,根據(jù)拋物線所過(guò)的三點(diǎn)的坐標(biāo),可得方程組,解可得a、b的值,即可得解析式;

2)易由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo),根據(jù)圖形間的關(guān)系可得四邊形ABDE的面積=,代入數(shù)值可得答案;

3)根據(jù)題意,易得∠AOB=∠DBE=90°,且,即可判斷出兩三角形相似.

1拋物線與y軸交于點(diǎn)(03),

設(shè)拋物線解析式為y=ax2+bx+3a≠0

根據(jù)題意,得,

解得

拋物線的解析式為y=x2+2x+3

2)如圖,設(shè)該拋物線對(duì)稱軸是DF,連接DE、BD.過(guò)點(diǎn)BBG⊥DF于點(diǎn)G

由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為D1,4

設(shè)對(duì)稱軸與x軸的交點(diǎn)為F

四邊形ABDE的面積=

=AOBO+BO+DFOF+EFDF

=×1×3+×3+4×1+×2×4

=9;

3)相似,如圖,

BD=;

∴BE=

DE==

∴BD2+BE2=20DE2=20

即:BD2+BE2=DE2,

所以△BDE是直角三角形

∴∠AOB=∠DBE=90°,且,

∴△AOB∽△DBE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線與該二次函數(shù)的圖象交于AB兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸.

(1)的值及這個(gè)二次函數(shù)的關(guān)系式;

(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)PA、B不重合),過(guò)P軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E點(diǎn),設(shè)線段PE的長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為,求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在一點(diǎn)P,使得四邊形DCEP是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的解析式為,(與軸交于點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),項(xiàng)點(diǎn)為

1)求點(diǎn)的坐標(biāo);

2)若將拋物線沿著直線的方向平移得到拋物線;

①當(dāng)拋物線與直線只有一個(gè)公共點(diǎn)時(shí),求拋物線的解析式;

②點(diǎn)是①中拋物線上一點(diǎn),若為整數(shù),求滿足條件的點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境的號(hào)召,某小區(qū)將生活垃圾分成四類:廚余垃圾、可回收垃圾、不可回收垃圾、有害垃圾,分別記為a、b、c、并且設(shè)置了相應(yīng)的垃圾箱:“廚余垃圾”箱,“可回收垃圾”箱,“不可回收垃圾”箱,“有害垃圾”箱,分別記為AB,C,D

如果將一袋有害垃圾任意投放進(jìn)垃圾箱,則投放正確的概率是________

小明將家里的廚余垃圾、可回收垃圾分裝在兩個(gè)袋中,任意投放在其中兩個(gè)垃圾箱中,用畫(huà)樹(shù)狀圖或列表的方法求這兩袋垃圾都投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)藝術(shù)節(jié)期間,向?qū)W校學(xué)生征集書(shū)畫(huà)作品.九年級(jí)美術(shù)李老師從全年級(jí)14個(gè)班中隨機(jī)抽取了A、B、CD四個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.

1)李老師采取的調(diào)查方式是______________(填普查抽樣調(diào)查),李老師所調(diào)查的4個(gè)班征集到作品共_________件,其中B班征集到作品_______________件.

2)如果全年級(jí)參展作品中有4件獲得一等獎(jiǎng),其中有2名作者是男生,2名作者是女生.現(xiàn)在要抽取兩人去參加學(xué)?偨Y(jié)表彰座談會(huì),求恰好抽中一男一女的概率.(要求用樹(shù)狀圖或列表法寫(xiě)出分析過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過(guò)A2,0),B0b)兩點(diǎn)的直線,且b0,點(diǎn)C的坐標(biāo)為(2,0),當(dāng)點(diǎn)B移動(dòng)時(shí),過(guò)點(diǎn)CCDl交于點(diǎn)D

1)求點(diǎn)D,O之間的距離;

2)當(dāng)tanCDO=時(shí),求直線l的解析式;

3)在(2)的條件下,直接寫(xiě)出△ACD與△AOB重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書(shū)月活動(dòng),并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級(jí)進(jìn)行統(tǒng)計(jì),繪制了以下兩幅統(tǒng)計(jì)圖(不完整)

據(jù)圖中提供的信息完成以下問(wèn)題

(1)扇形統(tǒng)計(jì)圖中“八年級(jí)”對(duì)應(yīng)的圓心角是   °,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)過(guò)評(píng)審,全校有4篇讀后感榮獲特等獎(jiǎng),其中有一篇來(lái)自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)讀后感中任選兩篇在校廣播電臺(tái)上播出,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)讀后感被校廣播電臺(tái)播出的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開(kāi)發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場(chǎng)調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤(rùn)不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤(rùn)為P元,求每天的最大銷售利潤(rùn)是多少元?

3)在試銷售過(guò)程中,受國(guó)家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國(guó)家給予公司補(bǔ)貼mm≤40)元.在獲得國(guó)家每件m元補(bǔ)貼后,公司的日銷售利潤(rùn)隨日銷售量的增大而增大,則m的取值范圍是   (直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店老板到廠家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的.

1)求兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?

2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案