【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數量關系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
【答案】(1)證明見解析;(2)BD2+FC2=DF2,理由見解析;(3).
【解析】
(1)根據垂直的定義以及直角,得到∠BAD=∠CAE,然后SAS證明即可;
(2)根據等腰直角三角形的性質得到∠B=∠ACB=45°,然后由(1)的結論得到∠ACE=45°,BD=CE,從而得到∠FCE=90°,根據勾股定理得出,再根據SAS證明△DAF≌△EAF,根據全等三角形的性質得到DF=FE,從而得到結論;
(3)過點A作于G,根據(2)的結論得到DF=5,然后根據等腰直角三角形的性質求出DG,最后根據勾股定理求解即可.
(1)∵
∴
又∵
∴
在△ABD和△ACE中
∴△ABD≌△ACE;
(2)理由如下:
連接FE, ∵
∴
由(1)知△ABD≌△ACE
∴,
∴
∴
∴
∵AF平分
∴
在△DAF和△EAF中
∴△DAF≌△EAF
∴.
∴;
(3)過點A作于G
由(2)知
∴
∴
∵
∴
∴
∴在中.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O,D分別為AB,BC的中點,連接OD,作⊙O與AC相切于點E,在AC邊上取一點F,使DF=DO,連接DF.
(1)判斷直線DF與⊙O的位置關系,并說明理由;
(2)當∠A=30°,CF時,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統(tǒng)計圖:
根據統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次抽樣調查中的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“國際象棋”、“音樂舞蹈”和“書法”等多個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調查了本校部分學生選擇社團的意向.并將調查結果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 文學鑒賞 | 國際象棋 | 音樂舞蹈 | 書法 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據統(tǒng)計圖表的信息,解答下列問題:
(1)求本次抽樣調查的學生總人數及a、b的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1300名學生,試估計全校選擇“音樂舞蹈”社團的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,P為DC延長線上一點,AP分別交BD,BC于點M,N.
(1)圖中相似三角形共有_____對;
(2)證明:AM2=MNMP;
(3)若AD=6,DC:CP=2:1,求BN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖的花環(huán)狀圖案中,ABCDEF和A1B1C1D1E1F1都是正六邊形.
(1)求證:∠1=∠2;
(2)找出一對全等的三角形并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E是BC的中點,且∠AEC=∠DCE,則下列結論不正確的是( )
A. BF=DFB. S△AFD=2S△EFBC. 四邊形AECD是等腰梯形D. ∠AEB=∠ADC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,海中有一小島A,它周圍8海里內有暗礁,漁船由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達D點,這時測得小島A在北偏東30°方向上.
(1)求∠BAD的度數;
(2)如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com