如圖,已知梯形OABC,AB∥OC,A(2,4),B(3,4),C(7,0)、點D在線段OC上運動(點D不與點O、C重合),過點D作x軸的垂線交梯形的一邊于點E,以DE為一邊向左側(cè)作正方形DEFG,設(shè)點D的橫坐標(biāo)為t,正方形DEFG與梯形OABC重合部分的面積為s,
(1)直接寫出線段AO與線段BC所在直線的解析式;
(2)求s關(guān)于t的函數(shù)關(guān)系式,并求s的最大值.
【答案】分析:(1)已知了A、B、C三點坐標(biāo),即可利用待定系數(shù)求得直線AO和直線BC的解析式.
(2)此題應(yīng)分五種情況討論:
①點E在線段OA上時(包括和A點重合),即0<t≤2時,此時OD=t,DE=2t,重合部分是直角三角形,利用三角形的面積公式即可得到S、t的函數(shù)關(guān)系式;
②點E在線段AB上時(包括和B點重合),即2<t≤3時,此時OD=t,DE=4,重合部分是個直角梯形,根據(jù)梯形的面積公式可求得S、t的函數(shù)關(guān)系式;
③點E在線段BC上,點G在O點左側(cè)(或與點O重合),即3<t≤3.5時,此時OD=t,DE=7-t,重合部分是個直角梯形,首先將DE的長代入直線AO的解析式中,即可得到EF與AO的交點橫坐標(biāo),從而求得梯形的上底長,而梯形的下底為t,高為7-t,根據(jù)梯形的面積公式即可得到S、t的函數(shù)關(guān)系式;
④點E在線段BC上,點G在O點右側(cè),點F在直線OA左側(cè)(包括點F在OA上),即時,此時OD=t,DE=7-t,重合部分的面積可由正方形的面積減去未重合的直角三角形的面積,由此求得S、t的函數(shù)關(guān)系式;
⑤點E在線段BC上,其余三點均在梯形OABC內(nèi)部時,即時,此時重合部分的面積就是正方形EFGD的面積,從而求得S、t的函數(shù)關(guān)系式;
根據(jù)上述五種不同的函數(shù)的性質(zhì)和對應(yīng)的自變量取值范圍即可得到S的最大值及對應(yīng)的t的值.
解答:解:(1)設(shè)直線AO的解析式為:y=kx,由于A(2,4),則:
2k=4,k=2,
∴y=2x;
設(shè)直線BC的解析式為:y=ax+b,則有:

解得;
∴y=-x+7;
故直線AO的解析式為:y=2x;(1分)
直線BC的解析式為:y=-x+7.(2分)

第(2)小題分以下五段:
①當(dāng)0<t≤2時,有:s=t2;
當(dāng)t=2時,s有最大值為:4 (4分)
②當(dāng)2<t≤3時,有:s=4t-4;
當(dāng)t=3時,s有最大值為:8(6分)
③當(dāng)3<t≤3.5時,有:;
當(dāng)t=3.5時,s有最大值為:(7分)
④當(dāng)時,有:;
當(dāng)t滿足時,s的值小于.(8分)
⑤當(dāng)時,有:s=(t-7)2
此時s的值小于,(9分)
綜上所述,當(dāng)t=3.5時,s有最大值為:.(10分)
點評:此題主要考查了一次函數(shù)解析式的確定以及圖形面積的求法,需要特別注意的是:在求有關(guān)動點問題時要注意分析題意分情況討論結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形紙片OABC中,兩底邊AO=5,BC=4,垂直于底的腰CO=
3
.點T在線段AO上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′,折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù);
(2)求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形紙片OABC中,兩底邊OA=10,CB=8,垂直于底的腰OC=2
3
,點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)點OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S;
(1)求∠OAB的度數(shù);
(2)求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直角梯形紙片OABC中,兩底邊AO=5,BC=4,垂直于底的腰CO=數(shù)學(xué)公式.點T在線段AO上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′,折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù);
(2)求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

如圖,已知直角梯形紙片OABC中,兩底邊OA=10,CB=8,垂直于底的腰,點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)點OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S;
(1)求∠OAB的度數(shù);
(2)求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市高新區(qū)中考數(shù)學(xué)模擬調(diào)研統(tǒng)測卷(解析版) 題型:解答題

(2009•蘇州模擬)如圖,已知直角梯形紙片OABC中,兩底邊AO=5,BC=4,垂直于底的腰CO=.點T在線段AO上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′,折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)OT=t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù);
(2)求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(4)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案