【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法,其中正確的說法是( 。
A. 汽車共行駛了120千米 B. 汽車在整個行駛過程中平均速度為40千米
C. 汽車返回時的速度為80千米/時 D. 汽車自出發(fā)后1.5小時至2小時之間速度不變
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災物資200噸和300噸的消息后,決定調(diào)運物資支援災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現(xiàn)將這些救災物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×6的方格紙中,每個小方格都是邊長為1的正方形,其中A、B、C為格點,作△ABC的外接圓⊙O,則弧AC的長等于( 。
A. π B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E,F,與雙曲線y=﹣(x<0)交于點P(﹣1,n),且F是PE的中點,直線x=a與l交于點A,與雙曲線交于點B(不同于A),PA=PB,則a=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0(a≠0)滿足4a-2b+c=0,且有兩個相等的實數(shù)根,則( )
A. b=aB. c=2aC. a(x+2)2=0(a≠0)D. a(x-2)2=0(a≠0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面解方程的步驟,在后面的橫線上填寫此步驟的依據(jù):
解:去分母,得.①依據(jù):_________
去括號,得.
移項,得.②依據(jù):__________
合并同類項,得.
系數(shù)化為1,得.
∴是原方程的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com